





#### **Certified Mail**

Ms. Janelle J. Trowhill Bureau of Air Quality South Carolina Dept. of Health and Environmental Control 2600 Bull Street Columbia, SC 29201

Subject:

3M Greenville Film Plant - Title V Permit #: TV-1200-0073

Title V Permit Renewal Application

Dear Ms. Trowhill:

Enclosed please find three copies of the Title V permit renewal application for 3M's Greenville Film Plant. 3M is submitting two public copies and one confidential copy of the permit application. Please note that some of the information in this application is considered confidential. In particular, process flow diagrams and information related to throughput, design rate, emission factors, and formulation data for specific emission points have been suppressed in the individual forms in the public copies.

3M, as owner and operator of the 3M plant located in Greenville, South Carolina, believes that this information is not public knowledge or general knowledge in the trade or business; it is secret information that has not been placed in the public domain. Thus, it is entitled to be protected from being divulged to the public and should be considered as trade secret information and held confidential. The confidential information is provided in a separate document and marked "Confidential".

As part of this Title V renewal, we reviewed all the emission units and their corresponding stack vent numbers. We reorganized units ID 01, 02, 03 and 06. The new organization provides a better understanding of the configurations of Train 1 and Train 2. It clearly identifies equipment that shares the same stack and equipment with its own stack. The emission calculations were based on AP-42 emission factors as used in previous submittals resulting in no increases.

G1/G2 mixing operations were incorporated in the Insignificant Activity list. The emissions from these units are less than 5 tpy of VOC since they only mix waterbased coatings. The fire pump and emergency generator are subject to 40 CFR 63 Subpart ZZZZ, however they don't have any requirements associated with this regulation. They are included in the insignificant activity list. Updated stack vent diagrams for G-3 are included in this application.

No new modeling was conducted for this submittal since no emissions were increased since the last modeling. The application includes the latest modeling results. These results include an air dispersion model for particulates with the most updated information from both Greenville Tape

and Greenville Film plants conducted in December 2009, an air toxics modeling conducted in 2004 and G3 air toxics modeling conducted in December 2006.

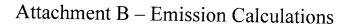
If you have any questions about this application, please contact me at (651) 737-3629 or by email at gzappia@mmm.com.

Sincerely,

Gabriela Zappia

Senior Environmental Engineer

PUBLIC COPY


Enclosure – Title V renewal application (2 public copies and 1 confidential copy)

#### 3M Greenville – Film Title V Renewal Application Table of Contents

PUBLIC COPY

#### Attachment A – Permit Application Forms

- 1. Form A
- 2. Form B
- 3. Form C
- 4. Form D
- 5. Form E
- 6. Form F
- 7. Form G
- 8. Form H
- 9. Form I
- 10. Form J
- 11. Form K



Attachment C – Process Flow Diagrams & Detailed Process Description

Attachment D - Facility Stack/Vent Diagram

Attachment E – Permit Markup

#### Attachment F – Ambient Air Quality Modeling & Analysis

- 1. Greenville Site Particulates December 2009
- 2. G3 Film Line Air Toxics December 2006
- 3. Greenville Site Criteria Pollutants, Air Toxics June 2004

Attachment G – Federal & State Regulatory Applicability Review

#### Attachment A

Title V Permit Renewal Application Forms



#### Title V Permit Application Facility Profile – Form A Bureau of Air Quality Page 1 of 1





#### Please Refer to Instruction Pages Before Completing This Form When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

|                                                                                                   | use                                              | e une retur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n key.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                | ٧                  |                 |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|--------------------|-----------------|
|                                                                                                   |                                                  | FACILITY IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                |                    |                 |
| Company Name for Permit: 3N                                                                       | l Company – Greenville                           | e Film                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2. Existing       | State Air Pe   | rmit Number:       | 1200-0073       |
| Business Mailing Address:     14                                                                  | 00 Perimeter Road                                | 4. City:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Greenville                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5. State:         | SC             | 6. Zip Code:       | 29605           |
| 7. Plant Location (Street or Highway): 14                                                         | 00 Perimeter Road                                | 8. City:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Greenville                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9. State:         | sc             | 10. Zip Code:      |                 |
| 11. County: Greenville                                                                            |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | y SIC Code: 3081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13. NAICS         |                | 326113             | 29005           |
| 14. EPA (AIRS) Facility Identification No.:                                                       | SC0980602841                                     | 15. Latitud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                |                    |                 |
| 17. Date Facility Was Built:                                                                      |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16. Longitue      | ie. č          | 32° 21' 36"        |                 |
| , , , , , , , , , , , , , , , , , , , ,                                                           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                |                    |                 |
| D                                                                                                 |                                                  | CONTACT IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                |                    |                 |
| RESPONSIBLE OFFICIAL AUTHORIZED REPRESE                                                           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ENVIRONMENTAL / TECHNICAL CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NTACT:            |                |                    |                 |
| 18. Last: Waldon                                                                                  | 19. First: <b>Tom</b>                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29. Last: Stone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 30. First:     | Barry              |                 |
| 20. Title: Plant Manager                                                                          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31. Title: Engineer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                |                    |                 |
|                                                                                                   | rimeter Road                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32. Mailing Address Line 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1408 Pe           | rimeter        | Road               |                 |
| 22. Mailing Address Line 2:                                                                       |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33. Mailing Address Line 2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                |                    |                 |
| 23. City: <b>Greenville</b> 24. Sta 26. Phone No.: <b>(864)</b> 299-4248                          |                                                  | 9605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34. City: Greenvi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | ate: SC        | 36.Zip Code:       | 29605           |
|                                                                                                   |                                                  | 9-4342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37. Phone No.: (864) 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9-4369            | 38. Fax No     | (864) 2            | 99-4360         |
| 28. E-mail Address: tmwaldon2@                                                                    | ymmm.com                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 39. E-mail Address: blstd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ne@mmi            | n.com          |                    |                 |
|                                                                                                   | Pi                                               | URPOSE OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | APPLICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                |                    |                 |
| ). Facility Type:                                                                                 | ☑ Title V ☐ Co-Located Facilit                   | tv (co-located fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cility if yes, name and permit # of co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | located facility  | Λ.             |                    |                 |
| 41 Permit Action: New Renew                                                                       | ral                                              | 1) (50 1000100 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | omy if yes, flame and permit # or co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | ·).            |                    |                 |
| Modification: Administrative Amend                                                                |                                                  | dification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ☐ Significant Modific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | [              | ☐ Operational Fle  | xibility        |
| (Submit Form AA)  42. Attainment Area Designation: Is the source                                  | (Submit F                                        | orm MM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (Submit Form SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                | (Submit Form       |                 |
| If "Yes", Indicate Non-attainment Pollutan                                                        | t(s): PM <sub>2.5</sub> O <sub>3</sub> (Precurso | or pollutants to O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | zone are NOx and VOC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ] Yes             |                |                    |                 |
|                                                                                                   |                                                  | SIGNAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | URES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                |                    |                 |
| I certify, to the best of my knowledge and I certification submitted in this permit applications. | belief, that no applicable standards             | and/or regulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ns will be contravened or violated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I. I certify that | any applic     | ation form, report | or compliance   |
| certification submitted in this permit applicated descriptions which are found to be incorrect m  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | asonable inquir   | y. I under     | stand that any sta | itements and/or |
|                                                                                                   | ,                                                | · or any pormit it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oded for this application.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                |                    |                 |
| 1 1 00                                                                                            |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                |                    |                 |
| Com Wallon                                                                                        |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                | Our a              | C 7/1/1         |
| 43. Responsible Official Signature/Autho                                                          | rized Representative                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Title/Position Plant Man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ager              |                | Cene 1.            | 2,010           |
| Note* For change or addition of re                                                                | sponsible official(s) submit                     | Responsible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e Official (RO) Notification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Form (see a       | attachme       | nt E)              |                 |
|                                                                                                   |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | and the second |                    |                 |
|                                                                                                   | Cons                                             | SULTING FIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                |                    |                 |
| 44. Consulting Firm:                                                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The state of the s | *************     | <del></del>    |                    |                 |
| Preparer Name: 45. Last                                                                           |                                                  | FU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B 10 Mer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TIGE              | - 1            |                    |                 |
| 47. Mailing Address Line 1:                                                                       |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I I               |                |                    |                 |
| 48. Mailing Address Line 2:                                                                       |                                                  | - The same of the |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                | ***                |                 |
| 49. City:                                                                                         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50. State:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                | Zip Code:          |                 |
| 52. Phone No.: ( ) - ext.                                                                         | 53 Fax No : ( )                                  | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 64 E mail Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·                 | J1.            | Lip Code.          |                 |

\*\*INCOMPLETE APPLICATIONS WILL BE RETURNED\*\*



#### Title V Permit Application Application Checklist - Form B Bureau of Air Quality



| GENERAL APPLICATION CONTENTS - DOES THE APPLICATION PACKAGE INCLUDE  1. A Table of Contents?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 2. A list of all items for which a permit is being sought (Form C Information)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ✓ Yes ☐ No ☐ N                                               |
| 3. A plot plan or map?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ✓ Yes ☐ No ☐ N                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ✓ Yes ☐ No ☐ N/                                              |
| A detailed drawing of the layout of the facility showing exhaust points and dimensions of each structure, including height, width, and length?  A detailed facility wide process description and flow it is a set flow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ✓ Yes ☐ No ☐ N/                                              |
| 5. A detailed facility-wide process description and flow diagram showing the relationship between each emission unit at the facility?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ⊠ Yes □ No □ N/                                              |
| 6. A detailed process description and diagram for each emission unit at the facility?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ✓ Yes ☐ No ☐ N/                                              |
| 7. All reasonably anticipated operating scenarios?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ⊠ Yes □ No □ N/                                              |
| 8. Are fugitive emissions included in Forms D, and F?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ⊠ Yes □ No □ N//                                             |
| 9. Detailed calculations showing: (1) Uncontrolled emissions; (2) Control equipment efficiency; (3) Controlled emissions in pounds per hour and ot applicable units, e. g. ppm or grains per cubic foot, if necessary, etc.; and (4) Allowable emissions, in the same terms as above?                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | her Yes No No                                                |
| <ol> <li>A request to utilize the operational flexibility provisions and include the information required for such use? (if applicable)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ☐ Yes ☒ No ☐ N/A                                             |
| 11. A request for a permit shield? (Complete Form K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ☑ Yes ☐ No ☐ N/A                                             |
| 12. A completed listing of insignificant emission units, if applicable? (Complete Form G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M Vac D N. D N.                                              |
| 13a. Modeling results for NAAQS, PSD Class II Increment and/or Air Toxics if this facility has not already demonstrated compliance with the<br>Standards as applicable (S.C. Regulation 61-62.5, Standards 2, 7 and 8)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | se 🛛 Yes 🗌 No 🗌 N/A                                          |
| 3b. If #13a is yes, does the plot plan required by item #3 show stack locations and dimensions (length, width, and height) of buildings/structure?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ⊠ Yes □ No □ N/A                                             |
| 4. A completed compliance plan/schedule of compliance as requested in Form !?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M Vac D Na D NVA                                             |
| 5. A completed compliance plan/schedule of compliance addendum for each of the non-complying emission units for which issuance of a Part permit is requested?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70 ☐ Yes ☐ No ☒ N/A                                          |
| 6. A completed compliance certification form? Complete Forms A and I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ✓ Yes ☐ No ☐ N/A                                             |
| <ol> <li>Acid rain portions of permit application and compliance plans, as required by regulations promulgated under Title IV of the Act (if applicable). (S         EPA forms on EPA's web site <a href="http://www.epa.gov/airmarkets/forms/index.html#permits">http://www.epa.gov/airmarkets/forms/index.html#permits</a>).</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                 | Gee ☐ Yes ☐ No ☒ N/A                                         |
| COPIES OF APPLICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                              |
| 8a. Does the application contain confidential information? If yes, all confidential information should be submitted under separate cover.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ☑ Yes ☐ No ☐ N/A                                             |
| 5b. Have two copies of the application suitable for public inspection and one copy with confidential information properly marked (if applicable) bee<br>submitted, in accordance with applicable regulations?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | en 🛛 Yes 🗌 No 🗌 N/A                                          |
| Has the application been submitted to any other government agency (not required)? If so, who?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ☐ Yes ☒ No ☐ N/A                                             |
| ). Does the application include an electronic copy of the application? (Mandatory)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ⊠ Yes □ No □ N/A                                             |
| l. Is the facility submitting a draft Title V permit with this application (optional)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ⊠ Yes □ No □ N/A                                             |
| 2. For any non-permitted emission sources or activities a separate construction permit application should not be included in this application. Pleas submit construction permit applications under a separate cover.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e                                                            |
| submit construction permit applications under a separate cover.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |
| REGULATORY INFORMATION REQUESTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |
| REGULATORY INFORMATION REQUESTED  Does the application include a proposed determination of maximum achievable control technology (MACT) for hazardous air pollutants pursuant to sections 112(g) and 112(j) of the Clean Air Act Amendments of 19902 (if applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |
| REGULATORY INFORMATION REQUESTED  Does the application include a proposed determination of maximum achievable control technology (MACT) for hazardous air pollutants pursuant to sections 112(g) and 112(j) of the Clean Air Act Amendments of 1990? (if applicable)  Does the application include sufficient information regarding accidental releases pursuant to section 112(r) of the Clean Air Act Amendments of 1990? (if applicable)                                                                                                                                                                                                                                                                                                               | f Ves No No NA                                               |
| REGULATORY INFORMATION REQUESTED  Does the application include a proposed determination of maximum achievable control technology (MACT) for hazardous air pollutants pursuant to sections 112(g) and 112(j) of the Clean Air Act Amendments of 1990? (if applicable)  Does the application include sufficient information regarding accidental releases pursuant to section 112(r) of the Clean Air Act Amendments of 1990? (if applicable)  Does the application identify all applicable requirements including section 111 (NSPS) and/or Section 112 (NESHAP) of the Clean Air Act? (Form K)                                                                                                                                                            | f Yes No No N/A                                              |
| REGULATORY INFORMATION REQUESTED  Does the application include a proposed determination of maximum achievable control technology (MACT) for hazardous air pollutants pursuant to sections 112(g) and 112(j) of the Clean Air Act Amendments of 1990? (if applicable)  Does the application include sufficient information regarding accidental releases pursuant to section 112(r) of the Clean Air Act Amendments of 1990? (if applicable)                                                                                                                                                                                                                                                                                                               | f Yes No No N/A Yes No No N/A                                |
| REGULATORY INFORMATION REQUESTED  Does the application include a proposed determination of maximum achievable control technology (MACT) for hazardous air pollutants pursuant to sections 112(g) and 112(j) of the Clean Air Act Amendments of 1990? (if applicable)  Does the application include sufficient information regarding accidental releases pursuant to section 112(r) of the Clean Air Act Amendments of 1990? (if applicable)  Does the application identify all applicable requirements including section 111 (NSPS) and/or Section 112 (NESHAP) of the Clean Air Act? (Form K)                                                                                                                                                            | f Yes No N/A  Yes No N/A  Yes No N/A  Yes No N/A  Yes No N/A |
| REGULATORY INFORMATION REQUESTED  Does the application include a proposed determination of maximum achievable control technology (MACT) for hazardous air pollutants pursuant to sections 112(g) and 112(j) of the Clean Air Act Amendments of 1990? (if applicable)  Does the application include sufficient information regarding accidental releases pursuant to section 112(r) of the Clean Air Act Amendments of 1990? (if applicable)  Does the application identify all applicable requirements including section 111 (NSPS) and/or Section 112 (NESHAP) of the Clean Air Act? (Form K)  If applicable, is a Compliance Assurance Monitoring (CAM) Plan submitted with this Title V permit application (Form I and/or CAM Plan Supplemental Form)? | f Yes No No N/A Yes No No N/A                                |



#### Title V Permit Application Application Checklist - Form B Bureau of Air Quality



| WHY APPLICANT IS APPLYING FOR A TITLE V PERMIT? (CHECK ALL THAT APPLY)                                                                                                                                                                                 |         |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|
| 29a. The "potential to emit" of the facility is 100 tons/year or more for an individual regulated pollutant.                                                                                                                                           | ⊠ Yes □ | No 🗌 N/A |
| 29b. The facility is an affected facility for acid rain deposition.                                                                                                                                                                                    | ☐ Yes ⊠ | No □ N/A |
| 29c. The "potential to emit" for any one hazardous air pollutant is 10 tons/year or more, or the total of all hazardous air pollutants is 25 tons/year or more, or the facility meets an other applicable lower threshold required by a MACT Standard. | ⊠ Yes □ | No 🔲 N/A |
| 29d. Other reason –(e.g. co-location) Please list:                                                                                                                                                                                                     | ☐ Yes 🏻 | No 🗌 N/A |
| CONDITIONAL MAJOR REQUEST OR REGULATORY AVOIDANCE                                                                                                                                                                                                      |         |          |
| 30. Are all controlled emissions of the facility below the applicability levels for Part 70 permit?                                                                                                                                                    | ☐ Yes ⊠ | No 🗌 N/A |
| 31. Does the application propose limitations that will constrain the operation of the facility such that potential emissions of the facility will fall below applicability levels for Part 70 permits or MACT applicability?                           | ☐ Yes ⊠ | No 🗌 N/A |
| 32. Is the facility requesting a MACT avoidance limit?                                                                                                                                                                                                 | ☐ Yes ☐ | No 🛛 N/A |
| 33. Is the facility requesting a PSD/NSR avoidance (facility-wide)?                                                                                                                                                                                    | ☐ Yes ⊠ | No 🗌 N/A |
| 34. Is the facility requesting a BACT/LAER, SC Regulation 61-62.5, Standard 5.1 avoidance?                                                                                                                                                             | ☐ Yes ☐ | No 🛛 N/A |



| Emission Unit Description |                           |                 |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |  |  |
|---------------------------|---------------------------|-----------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|
| 1                         | 2                         | 19              | 20                                                        | The second secon |                    |  |  |
| Emission<br>Unit ID       | Emission Unit Description | Equipment<br>ID |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 Control Device   |  |  |
|                           |                           | PP1             | Prepolymer #1                                             | NI/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |  |  |
|                           |                           | RB              | Blending/Mixing (Shared with Train 2)                     | N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |  |  |
|                           |                           | EGT             | Ethylene Glycol Day Tank (Shared with Train 2)            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |  |  |
| 01                        | Train 4                   | PC1             | Polycon #1 (includes Spray Condenser)                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |  |  |
| UI                        | Train 1                   | PC2             | Polycon #2 (includes Spray Condenser)                     | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |  |  |
|                           | 1                         | EGR1            | Train 1 REG Receiver                                      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |  |  |
|                           |                           | MER1            | Train 1 MeOH Receiver                                     | MEAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02 After Condenser |  |  |
|                           |                           | ICR1            | Train 1 Intermediate Cut Receiver                         | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |  |  |
|                           |                           | RGDT            | Byproduct EG Day Tank (Shared with Train                  | MEAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02 After Condenser |  |  |
| 014                       | Train 1 Steam Vents       | PP1 SJ          | PP1 Steam Jet Vent                                        | MEAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02 After Condenser |  |  |
| 01 <b>A</b>               |                           |                 | PC1 Steam Jet Vent                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |  |  |
|                           |                           |                 | PC2 Steam Jet Vent                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |  |  |
|                           |                           | PP2             | Esterification System #2                                  | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |  |  |
| ı                         |                           | PC3             | Polycon #3 (includes Spray Condenser)                     | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |  |  |
| 02                        | Train 2                   | PC4             | Polycon #4 (includes Spray Condenser)                     | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |  |  |
|                           |                           | EGR2            | Train 2 REG Receiver                                      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |  |  |
|                           |                           |                 | Train 2 MeOH Receiver                                     | MEAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02 After Condenser |  |  |
|                           |                           |                 | Train 2 Intermediate Cut Receiver                         | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |  |  |
| 004                       | T : 0                     | PP2 SJ          | PP2 Steam Jet Vent                                        | MEAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02 After Condenser |  |  |
| 02A                       | Train 2 Steam Vents       | PC3 SJ          | PC3 Steam Jet Vent                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |  |  |
|                           |                           | PC4 SJ          | PC4 Steam Jet Vent                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |  |  |
| 03                        | Vertical Ejector Towers   |                 | Resin Train Cooling Tower                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |  |  |
|                           |                           | EJT2 4          | Vertical Ejector Tower 2                                  | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |  |  |
|                           |                           | MEOH E          | Byproduct Methanol Tank                                   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |  |  |
| 04 F                      | Resin Tank Farm           |                 | /irgin ET Tank                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |  |  |
|                           | 2000                      |                 | Byproduct EG Tank                                         | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |  |  |
|                           |                           | OMTT C          | DMT Tank                                                  | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |  |  |
| 05                        |                           |                 | /irgin Silo Airveying incl. Master Batch and Virgin Silos | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |  |  |
| 05                        | Tanks and Virgin Silo     | OT1             | Distillate Fuel Oil Tank                                  | BH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 02 Baghouse        |  |  |
|                           |                           | ОТ2 Г           | Distillate Fuel Oil Tank                                  | N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |  |  |



|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Emission Unit Description                                       | -71 (Tr     |                  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------|-------------|------------------|
| 1<br>Emission<br>Unit ID | 2 Emission Unit Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19<br>Equipment<br>ID | 20<br>Equipment Description                                     |             | 3 Control Device |
| Security of the second   | A de Mila de Armana de Calabara de Calabar | IG1DT                 | G1 Dryer Tower                                                  | DUA         | 10 Danie         |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G1XT                  | G1 Extruder                                                     | BH13<br>N/A | 10 Baghouse      |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G1TN                  | G1 Tender                                                       | N/A         |                  |
| 06                       | G1 Film Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | G1GR                  | G1 Grinder Airveying                                            | BH7         | 04 Baghouse      |
| 00                       | O T T IIII EIIIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G1ET                  | G1 Edge Trimmer including Airveying                             | BH12        | 04 Baghouse      |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OLS                   | OLS                                                             | N/A         | 04 Bagnouse      |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DTOW1                 | G1 Dryer Airveying                                              | BH13        | 10 Baghouse      |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G2DT                  | G2 Dryer Tower                                                  | BH5         | 10 Baghouse      |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G2XT                  | G2 Extruder                                                     | N/A         | 10 Bagnouse      |
|                          | G2 Film Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | G2GR                  | G2 Grinder including Airveying                                  | BH6         | 05 Baghouse      |
| 07                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G2ET                  | G2 Edge Trim including Airveying                                | BH11        | 05 Baghouse      |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G2PC                  | P Coater                                                        | N/A         | 00 Dayriouse     |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G2GC                  | G Coater                                                        | N/A         |                  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G2C                   | C Oven                                                          | N/A         |                  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DTOW2                 | G2 Dryer Airveying                                              | BH5         | 10 Baghouse      |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CT01                  | Cut-to-size 1 with Collection Cyclone Separator 1               | ВН9         | 07 Baghouse      |
| 08                       | Visual Converting Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CT02                  | Cut-to-size 2 with Collection Cyclone Separator 2               | BH9         | 07 Baghouse      |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VSET                  | VSET Edge                                                       | ВН9         | 07 Baghouse      |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FSILO                 | Flake Silo including Airveying                                  | ВН4         | 08 Baghouse      |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RBFG                  | PET Reclaim Fugitives                                           | BH10        | 08 Baghouse      |
| 09                       | PET Reclaim Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RVAC                  | PET Reclaim Vacuum                                              | BH10        | 08 Baghouse      |
| 03                       | LT Neclaim Flocess                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PTZR                  | Reclaim Pellitizers                                             | N/A         |                  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RSILO                 | Reclaim Silo Airveying including Reclaim and other Virgin Silos | внз         | 08 Baghouse      |
| 10                       | Box/Tote Material Handling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BTLU                  | Box/Tote Airveying                                              | BH1         | 09 Baghouse      |
| 11                       | Steam Boiler #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SB1                   | 57.9 MMBtu/hr Steam Boiler #1                                   | N/A         | <u> </u>         |
| 12                       | Steam Boiler #2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SB2                   | 41.4 MMBtu/hr Steam Boiler #2                                   | N/A         |                  |
| 13                       | Born Oil Heater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BORN                  | 18.0 MMBth/hr Born T-66 Oil heater                              | N/A         |                  |

DHEC 2940 (02-2005)



|                          | Emission Unit Description           |         |                                  |                  |  |  |  |  |  |
|--------------------------|-------------------------------------|---------|----------------------------------|------------------|--|--|--|--|--|
| 1<br>Emission<br>Unit ID | ilssion   Emission Unit Description |         | 20<br>Equipment Description      | 3 Control Device |  |  |  |  |  |
| 14                       | Carotek Oil Heater                  | CARO    | 28.0 MMBtu/hr Carotek Oil Heater | N/A              |  |  |  |  |  |
|                          |                                     | G3GC1   | G3 Coater 1                      | N/A              |  |  |  |  |  |
|                          |                                     | G3GC2   | G3 Coater 2 (Future)             | N/A              |  |  |  |  |  |
|                          |                                     | G3C     | G3 Oven                          | N/A              |  |  |  |  |  |
|                          |                                     | G3ASP1  | G3 Feed Hopper/Aspirator 1       | BH15 Baghouse    |  |  |  |  |  |
|                          |                                     | G3ASP2  | G3 Feed Hopper/Aspirator 2       | BH15 Baghouse    |  |  |  |  |  |
|                          |                                     | G3XT1   | G3 Extruder 1                    | N/A              |  |  |  |  |  |
|                          |                                     | G3XT2   | G3 Extruder 2                    | N/A              |  |  |  |  |  |
|                          |                                     | G3XT3   | G3 Extruder 3                    | N/A              |  |  |  |  |  |
|                          |                                     | G3XT4   | G3 Extruder 4                    | N/A              |  |  |  |  |  |
|                          |                                     | G3D     | G3 Pellet Dryer                  | BH15 Baghouse    |  |  |  |  |  |
|                          |                                     | G3H1    | G3 Resin Charging Hopper 1       | BH15 Baghouse    |  |  |  |  |  |
|                          |                                     | G3H2    | G3 Resin Charging Hopper 2       | BH15 Baghouse    |  |  |  |  |  |
|                          |                                     | G3H3    | G3 Resin Charging Hopper 3       | BH15 Baghouse    |  |  |  |  |  |
|                          |                                     | G3CW    | G3 Die Casting Wheel             | N/A              |  |  |  |  |  |
|                          |                                     | G3FSGR1 | G3 Floor Scrap Grinder 1         | BH14 Baghouse    |  |  |  |  |  |
| 15                       | C2 Film Line                        | G3FSGR2 | G3 Floor Scrap Grinder 2         | BH14 Baghouse    |  |  |  |  |  |
| 10                       | G3 Film Line                        | G3FSGR3 | G3 Floor Scrap Grinder 3         | BH14 Baghouse    |  |  |  |  |  |
|                          |                                     | G3FSGR4 | G3 Floor Scrap Grinder 4         | BH14 Baghouse    |  |  |  |  |  |
|                          |                                     | G3ETGR1 | G3 Edge Trim Grinder 1           | BH14 Baghouse    |  |  |  |  |  |
|                          |                                     | G3ETGR2 | G3 Edge Trim Grinder 2           | BH14 Baghouse    |  |  |  |  |  |

DHEC 2940 (02-2005)



|                          |                             |                       | Emission Unit Description |                  |          |
|--------------------------|-----------------------------|-----------------------|---------------------------|------------------|----------|
| 1<br>Emission<br>Unit ID | 2 Emission Unit Description | 19<br>Equipment<br>ID | 20 Equipment Description  | 3 Control Device |          |
|                          |                             | G3ET                  | G3 Edge Trim Airveying    | BH14             | Baghouse |
|                          |                             | G3FS                  | G3 Floor Scrap Airveying  | BH14             | Baghouse |
|                          |                             | G3TL                  | G3 Flake Truck Loadout    | BH14             | Baghouse |
|                          |                             | G3BL                  | G3 Flake Box Loadout      | BH1              | Baghouse |
|                          |                             | G3FSILO1              | Clear Flake Silo          | N/A              |          |
|                          |                             | G3FSILO2              | Color Flake Silo          | N/A              |          |
|                          |                             | G3VSILO1              | G3 Pellet Silo 1          | BH15             | Baghouse |
|                          |                             | G3VSILO2              | G3 Pellet Silo 2          | BH15             | Baghouse |
|                          |                             | G3VSILO3              | G3 Pellet Silo 3          | BH15             | Baghouse |
|                          |                             | G3VSILO4              | G3 Pellet Silo 4          | BH15             | Baghouse |
|                          |                             | G3VSILO5              | G3 Pellet Silo 5          | BH15             | Baghouse |
|                          |                             | G3MRTK1               | G3 Mix Room Tank 1        | N/A              |          |
|                          |                             | G3MRTK2               | G3 Mix Room Tank 2        | N/A              |          |
|                          |                             | G3MRTK3               | G3 Mix Room Tank 3        | N/A              |          |
|                          |                             | G3MRTK4               | G3 Mix Room Tank 4        | N/A              |          |
|                          |                             | G3MRSC1               | G3 Mix Room Storage 1     | N/A              |          |
|                          |                             |                       | G3 Mix Room Storage 2     | N/A              |          |
|                          |                             |                       | G3 Mix Room Storage 3     | N/A              |          |
| ļ                        |                             | G3MRH1                | G3 Mix Room Hood 1        | N/A              |          |
|                          |                             | G3MRH2                | G3 Mix Room Hood 2        | N/A              |          |
|                          |                             | G3MRH3                | G3 Mix Room Hood 3        | N/A              |          |



|                          |                       | 100 A                                    | Emission U                                      | nit Process Description |                        |                      |
|--------------------------|-----------------------|------------------------------------------|-------------------------------------------------|-------------------------|------------------------|----------------------|
| 1<br>Emission<br>Unit ID | 19<br>Equipment<br>ID | 4<br>Process<br>Weight Rate<br>(tons/hr) | 5<br>Production Rate<br>(units per time period) | 6<br>Product            | 7<br>SIC/NAICS<br>Code | 8<br>Comments        |
|                          | PP1                   |                                          | lb/hr                                           | PET                     |                        |                      |
|                          | RB                    |                                          | lb/hr                                           | PET                     |                        |                      |
|                          | EGT                   |                                          | lb/hr                                           | PET                     |                        |                      |
|                          | PC1                   |                                          | lb/hr                                           | PET                     |                        |                      |
| 01                       | PC2                   |                                          | lb/hr                                           | PET                     |                        |                      |
|                          | EGR1                  |                                          | lb/hr                                           | PET                     |                        |                      |
|                          | MER1                  |                                          | lb/hr                                           | PET                     |                        |                      |
|                          | ICR1                  |                                          | lb/hr                                           | PET                     |                        |                      |
|                          | RGDT                  |                                          | lb/hr                                           | PET                     |                        |                      |
|                          | PP1 SJ                |                                          | lb/hr                                           | PET                     |                        |                      |
| 01A                      | PC1 SJ                |                                          | lb/hr                                           | PET                     |                        |                      |
|                          | PC2 SJ                |                                          | lb/hr                                           | PET                     |                        |                      |
|                          | PP2                   |                                          | lb/hr                                           | PET                     |                        |                      |
|                          | PC3                   |                                          | lb/hr                                           | PET                     |                        |                      |
| 02                       | PC4                   |                                          | lb/hr                                           | PET                     |                        |                      |
| 02                       | EGR2                  |                                          | lb/hr                                           | PET                     |                        |                      |
|                          | MER2                  |                                          | lb/hr                                           | PET                     |                        |                      |
|                          | ICR2                  |                                          | lb/hr                                           | PET                     |                        |                      |
|                          | PP2 SJ                |                                          | lb/hr                                           | PET                     |                        |                      |
| 02A                      | PC3 SJ                |                                          | lb/hr                                           | PET                     |                        |                      |
|                          | PC4 SJ                |                                          | lb/hr                                           | PET                     |                        |                      |
| 03                       | EJT1                  |                                          | lb/hr                                           | PET                     |                        | Train 1 & 2 combined |
| 03                       | EJT2                  |                                          | <del>lb/hr</del>                                | PET                     |                        | Unit Removed         |
|                          | MEOH                  |                                          | lb/hr                                           | Methanol                |                        | Train 1 & 2 combined |
| 04                       | VEGT                  |                                          | gal                                             | Ethylene glycol         |                        | None.                |
| 04                       | REGT                  |                                          | lb/hr                                           | Ethylene glycol         |                        | Train 1 & 2 combined |
|                          | DMTT                  |                                          | ton/yr                                          | None listed             |                        | None.                |
|                          | VSILO                 |                                          | lb/hr                                           | PET                     |                        | Train 1 & 2 combined |
| 05                       | FOT1                  |                                          | gal                                             | Fuel oil                |                        | None.                |
|                          | FOT2                  |                                          | gal                                             | Fuel oil                |                        | None.                |

DHEC 2940 (02-2005)



|                          |                       |                                 | Emission U                                      | nit Process Description |                        |               |
|--------------------------|-----------------------|---------------------------------|-------------------------------------------------|-------------------------|------------------------|---------------|
| 1<br>Emission<br>Unit ID | 19<br>Equipment<br>ID | 4 Process Weight Rate (tons/hr) | 5<br>Production Rate<br>(units per time period) | 6<br>Product            | 7<br>SIC/NAICS<br>Code | 8<br>Comments |
|                          | G1DT                  |                                 | lb/hr                                           | PET film                |                        |               |
|                          | G1XT                  |                                 | lb/hr                                           | PET film                |                        | None.         |
|                          | G1TN                  |                                 | lb/hr                                           | PET film                |                        | None.         |
| 06                       | G1GR                  |                                 | lb/hr                                           | PET film                |                        | None.         |
|                          | G1ET                  |                                 | lb/hr                                           | None listed             |                        | None.         |
|                          | OLS                   |                                 | <del>lb/hr</del>                                | None listed             |                        | Unit Removed  |
|                          | DTOW1                 |                                 | lb/hr                                           | None listed             |                        |               |
|                          | G2DT                  |                                 | lb/hr                                           | PET film                |                        |               |
|                          | G2XT                  |                                 | lb/hr                                           | PET film                |                        | None.         |
|                          | G2GR                  |                                 | lb/hr                                           | PET film                |                        | None.         |
|                          | G2ET                  |                                 | lb/hr                                           | PET film                |                        | None.         |
| 07                       | G2PC                  |                                 | lb/hr                                           | PET film                |                        | None.         |
|                          | G2GC                  |                                 | lb/hr                                           | PET film                |                        | None.         |
|                          | G2C                   |                                 | lb/hr                                           | PET film                |                        | None.         |
|                          | DTOW2                 |                                 | lb/hr                                           | None listed             |                        |               |
|                          | CT01                  |                                 | boxes/hr                                        | None listed             |                        | None.         |
| 08                       | CT02                  |                                 | boxes/hr                                        | None listed             |                        | None.         |
| 00                       | VSET                  |                                 | lb/hr                                           | PET film                | 1                      | None.         |
|                          | FSILO                 |                                 | lb                                              | PET pellets             | <u> </u>               | None.         |
|                          | RBFG                  |                                 | lb/hr                                           | Polyester               |                        | None.         |
|                          | RVAC                  |                                 | lb/hr                                           | Polyester               |                        | Unit Removed  |
| 09                       | PTZR                  |                                 | ton/yr                                          | None listed             |                        | None.         |
|                          | RSILO                 |                                 | lb/hr                                           | PET pellets             |                        | None.         |
| 10                       | BTLU                  |                                 | lb/hr                                           | PET pellets             |                        | None.         |
| 11                       | SB1                   |                                 | MMBtu/hr                                        | Steam                   |                        | None.         |
| 12                       | SB2                   |                                 | MMBtu/hr                                        | Steam                   |                        | None.         |
| 13                       | BORN                  |                                 | MMBtu/hr                                        | Hot oil                 |                        | None.         |



|                          | Emission Unit Process Description |                                          |                                                 |                      |                        |                           |  |  |  |
|--------------------------|-----------------------------------|------------------------------------------|-------------------------------------------------|----------------------|------------------------|---------------------------|--|--|--|
| 1<br>Emission<br>Unit ID | 19<br>Equipment<br>ID             | 4<br>Process<br>Weight Rate<br>(tons/hr) | 5<br>Production Rate<br>(units per time period) | 6<br>Product         | 7<br>SIC/NAICS<br>Code | 8<br>Comments             |  |  |  |
| 14                       | CARO                              |                                          | MMBtu/hr                                        | Hot oil              |                        | None.                     |  |  |  |
|                          | G3GC1                             |                                          | Gal/hr                                          | Coating              |                        | None.                     |  |  |  |
|                          | G3GC2                             |                                          | TBD                                             | TBD (Future)         |                        | Unit not yet constructed. |  |  |  |
|                          | G3C                               |                                          | N/A                                             | N/A (Electric Oven)  |                        | None.                     |  |  |  |
|                          | G3ASP1                            |                                          | lb/hr                                           | Virgin & Reclaim PET |                        |                           |  |  |  |
|                          | G3ASP2                            |                                          | lb/hr                                           | Virgin & Reclaim PET |                        |                           |  |  |  |
|                          | G3XT1                             |                                          | lb/hr                                           | Virgin & Reclaim PET |                        |                           |  |  |  |
|                          | G3XT2                             |                                          | lb/hr                                           | Virgin & Reclaim PET |                        |                           |  |  |  |
|                          | G3XT3                             |                                          | lb/hr                                           | Virgin & Reclaim PET |                        |                           |  |  |  |
|                          | G3XT4                             |                                          | lb/hr                                           | Virgin & Reclaim PET |                        |                           |  |  |  |
|                          | G3D                               |                                          | lb/hr                                           | Virgin & Reclaim PET |                        |                           |  |  |  |
|                          | G3H1                              |                                          | lb/hr                                           | Virgin & Reclaim PET |                        |                           |  |  |  |
|                          | G3H2                              |                                          | lb/hr                                           | Virgin & Reclaim PET |                        |                           |  |  |  |
|                          | G3H3                              |                                          | lb/hr                                           | Virgin & Reclaim PET |                        |                           |  |  |  |
|                          | G3CW                              |                                          | lb/hr                                           | Virgin & Reclaim PET |                        |                           |  |  |  |
|                          | G3FSGR1                           |                                          | lb/hr                                           | Reclaim PET          |                        |                           |  |  |  |
| 15                       | G3FSGR2                           |                                          | lb/hr                                           | Reclaim PET          |                        |                           |  |  |  |
| 15                       | G3FSGR3                           |                                          | lb/hr                                           | Reclaim PET          |                        |                           |  |  |  |
|                          | G3FSGR4                           |                                          | lb/hr                                           | Reclaim PET          |                        |                           |  |  |  |
|                          | G3ETGR1                           |                                          | lb/hr                                           | Reclaim PET          |                        |                           |  |  |  |
|                          | G3ETGR2                           |                                          | lb/hr                                           | Reclaim PET          |                        |                           |  |  |  |

DHEC 2940 (02-2005)



| Emission Unit Process Description |                       |                                          |                                                 |                   |                        |                                        |  |  |
|-----------------------------------|-----------------------|------------------------------------------|-------------------------------------------------|-------------------|------------------------|----------------------------------------|--|--|
| 1<br>Emission<br>Unit ID          | 19<br>Equipment<br>ID | 4<br>Process<br>Weight Rate<br>(tons/hr) | 5<br>Production Rate<br>(units per time period) | 6<br>Product      | 7<br>SIC/NAICS<br>Code | 8<br>Comments                          |  |  |
|                                   | G3ET                  |                                          | lb/hr                                           | Reclaim PET       |                        | ************************************** |  |  |
|                                   | G3FS                  |                                          | lb/hr                                           | Reclaim PET       |                        |                                        |  |  |
|                                   | G3TL                  |                                          | lb/hr                                           | Reclaim PET       |                        |                                        |  |  |
|                                   | G3BL                  |                                          | lb/hr                                           | Reclaim PET       |                        |                                        |  |  |
|                                   | G3FSILO1              |                                          | N/A                                             | PET Flake         |                        | None.                                  |  |  |
|                                   | G3FSILO2              |                                          | N/A                                             | PET Flake         |                        | None.                                  |  |  |
|                                   | G3VSILO1              |                                          | lb/hr                                           | PET Pellets       |                        | None.                                  |  |  |
|                                   | G3VSILO2              |                                          | lb/hr                                           | PET Pellets       |                        | None.                                  |  |  |
|                                   | G3VSILO3              |                                          | lb/hr                                           | PET Pellets       |                        | None.                                  |  |  |
|                                   | G3VSILO4              |                                          | lb/hr                                           | PET Pellets       |                        | None.                                  |  |  |
|                                   | G3VSILO5              |                                          | lb/hr                                           | PET Pellets       |                        | None.                                  |  |  |
|                                   | G3MRTK1               |                                          | Batches/hr                                      | Solution Mixtures |                        | . 40/10.                               |  |  |
|                                   | G3MRTK2               |                                          | Batches/hr                                      | Solution Mixtures |                        |                                        |  |  |
|                                   | G3MRTK3               |                                          | Batches/hr                                      | Solution Mixtures |                        |                                        |  |  |
|                                   | G3MRTK4               |                                          | Batches/hr                                      | Solution Mixtures |                        |                                        |  |  |
|                                   | G3MRSC1               |                                          | Batches/hr                                      | Solution Mixtures |                        |                                        |  |  |
|                                   | G3MRSC2               |                                          | Batches/hr                                      | Solution Mixtures |                        |                                        |  |  |
|                                   | G3MRSC3               |                                          | Batches/hr                                      | Solution Mixtures |                        |                                        |  |  |
|                                   | G3MRH1                |                                          | Batches/hr                                      | Solution Mixtures |                        |                                        |  |  |
|                                   | G3MRH2                |                                          | Batches/hr                                      | Solution Mixtures |                        |                                        |  |  |
|                                   | G3MRH3                |                                          | Batches/hr                                      | Solution Mixtures |                        |                                        |  |  |



| Control Device Information  |      |                                                                   |                                     |                          |  |  |  |
|-----------------------------|------|-------------------------------------------------------------------|-------------------------------------|--------------------------|--|--|--|
| Equipment Control Device ID |      | 9  Control Device Description (Manufacturer, Name, Model #, etc.) | 10 Installation Date (Modification) | 11 Pollutants Controlled |  |  |  |
|                             | N/A  | N/A                                                               | N/A                                 | N/A                      |  |  |  |
| RB                          | N/A  | N/A                                                               | N/A                                 | N/A                      |  |  |  |
| EGT                         | N/A  | N/A                                                               | N/A                                 | N/A                      |  |  |  |
|                             | N/A  | N/A                                                               | N/A                                 | N/A                      |  |  |  |
|                             | N/A  | N/A                                                               | N/A<br>N/A                          |                          |  |  |  |
|                             | MEAC | 02 After Condenser                                                |                                     | N/A                      |  |  |  |
| MER1                        | N/A  | N/A                                                               | 1996                                | VOC                      |  |  |  |
| ICR1                        | MEAC | 02 After Condenser                                                | N/A                                 | N/A                      |  |  |  |
|                             | MEAC | 02 After Condenser                                                | 1996                                | VOC                      |  |  |  |
|                             | N/A  | N/A                                                               | 1996                                | VOC                      |  |  |  |
|                             | N/A  | N/A                                                               | N/A                                 | N/A                      |  |  |  |
|                             | N/A  | N/A                                                               | N/A                                 | N/A                      |  |  |  |
|                             | N/A  | N/A                                                               |                                     | N/A                      |  |  |  |
|                             | N/A  | N/A                                                               |                                     | N/A                      |  |  |  |
|                             |      | N/A                                                               |                                     | N/A                      |  |  |  |
|                             |      | 02 After Condenser                                                |                                     | N/A                      |  |  |  |
|                             |      | N/A                                                               | 1996                                | VOC                      |  |  |  |
|                             |      |                                                                   | N/A                                 | N/A                      |  |  |  |
|                             |      | 02 After Condenser                                                | 1996                                | VOC                      |  |  |  |
|                             |      | N/A                                                               | N/A                                 | N/A                      |  |  |  |
|                             |      | N/A                                                               | N/A                                 | N/A                      |  |  |  |
|                             |      | N/A                                                               |                                     | N/A                      |  |  |  |
|                             |      | N/A                                                               |                                     | N/A                      |  |  |  |
|                             |      | N/A                                                               |                                     | N/A                      |  |  |  |
|                             |      | N/A                                                               |                                     | N/A                      |  |  |  |
|                             |      | N/A                                                               |                                     | N/A                      |  |  |  |
|                             |      | N/A                                                               |                                     | N/A                      |  |  |  |
|                             |      | N/A                                                               |                                     | N/A                      |  |  |  |
|                             |      | 02 Baghouse                                                       |                                     | Particulates             |  |  |  |
|                             |      | N/A                                                               |                                     | N/A                      |  |  |  |
| OT2                         | N/A  | N/A                                                               |                                     | N/A                      |  |  |  |

DHEC 2940 (02-2005)



|                 |              | Control Device Information                                     |                         |                       |  |
|-----------------|--------------|----------------------------------------------------------------|-------------------------|-----------------------|--|
| 19<br>Equipment | 3<br>Control | 9                                                              | 10<br>Installation Date | 11                    |  |
| ID Device ID    |              | Control Device Description (Manufacturer, Name, Model #, etc.) | (Modification)          | Pollutants Controlled |  |
| G1DT            | BH13         | 10 Baghouse                                                    | 2006                    | Particulates          |  |
| G1XT            | N/A          | N/A                                                            | N/A                     | N/A                   |  |
| G1TN            | N/A          | N/A                                                            | N/A                     | N/A                   |  |
| G1GR            | BH7          | 04 Baghouse Chicago Conveyor Corp. 450-64-640                  | 1982 (2002)             | Particulates          |  |
| G1ET            | BH12         | 04 Baghouse                                                    | 2006                    |                       |  |
|                 | N/A          | N/A                                                            | N/A                     | Particulates<br>N/A   |  |
|                 | BH13         | 10 Baghouse                                                    | 2006                    |                       |  |
|                 | BH5          | 10 Baghouse Seneca Environmental Products 121-1MTS-8           | 1972 (1982)             | Particulates          |  |
| G2XT            | N/A          | N/A                                                            | 1972 (1982)             | Particulates          |  |
| G2GR            | BH6          | 05 Baghouse Chicago Conveyor Corp. 450-80-1000                 | 1000 (0000)             | N/A                   |  |
| G2ET            | BH11         | 05 Baghouse                                                    | 1982 (2002)             | Particulates          |  |
| G2PC            | N/A          | N/A                                                            | 2002<br>N/A             | Particulates<br>N/A   |  |
| G2GC            | N/A          | N/A                                                            | N/A                     | N/A                   |  |
|                 | N/A          | N/A                                                            | +                       | NI/A                  |  |
| OTOW2           | BH5          | 10 Baghouse Seneca Environmental Products 121-1MTS-8           |                         | N/A                   |  |
| CT01            | ВН9          | 07 Baghouse Steelcraft Model 10-554-6718                       |                         | Particulates          |  |
| CT02            | BH9          | 07 Baghouse                                                    |                         | Particulates          |  |
| /SET            |              | 07 Baghouse Steelcraft Model 10-554-6718                       |                         | N/A                   |  |
| SILO            | BH4          | 08 Baghouse Chicago Conveyor Corp. 450-72-810                  |                         | Particulates          |  |
|                 | BH10         | 08 Baghouse DCE PU304F10AD                                     |                         | Particulates          |  |
|                 |              | 08 Baghouse DCE PU304F10AD                                     |                         | Particulates          |  |
|                 |              | N/A                                                            |                         | Particulates          |  |
|                 |              |                                                                | N/A                     | N/A                   |  |
|                 |              | 08 Baghouse Chicago Conveyor Corp. 450-48-360                  | 1972                    | Particulates          |  |
|                 |              | 09 Baghouse Chicago Conveyor Corp. 45-72-810                   | 1982                    | Particulates          |  |
|                 |              | N/A                                                            |                         | N/A                   |  |
|                 |              | N/A                                                            |                         | N/A                   |  |
| BORN            | V/A          | N/A                                                            |                         | N/A                   |  |

DHEC 2940 (02-2005)



| Control Device Information         |      |                                                                  |                                           |                          |  |  |  |
|------------------------------------|------|------------------------------------------------------------------|-------------------------------------------|--------------------------|--|--|--|
| 19 3  Equipment   Control   Device |      | 9 Control Device Description (Manufacturer, Name, Model #, etc.) | 10<br>Installation Date<br>(Modification) | 11 Pollutants Controlled |  |  |  |
| CARO                               | N/A  | N/A                                                              | N/A                                       | N/A                      |  |  |  |
| G3GC1                              | N/A  | N/A                                                              | N/A                                       | N/A                      |  |  |  |
| G3GC2                              | N/A  | N/A                                                              | N/A                                       | N/A                      |  |  |  |
| G3C                                | N/A  | N/A                                                              | N/A                                       | N/A                      |  |  |  |
|                                    | BH15 | Baghouse                                                         | 2008                                      | Particulates             |  |  |  |
| G3ASP2                             | BH15 | Baghouse                                                         | 2008                                      | Particulates             |  |  |  |
|                                    | N/A  | N/A                                                              | N/A                                       | N/A                      |  |  |  |
| G3XT2                              | N/A  | N/A                                                              | N/A                                       | N/A                      |  |  |  |
| G3XT3                              | N/A  | N/A                                                              | N/A                                       | N/A                      |  |  |  |
|                                    | N/A  | N/A                                                              | N/A                                       | N/A                      |  |  |  |
| G3D                                |      | Baghouse                                                         | 2008                                      | Particulates             |  |  |  |
|                                    | BH15 | Baghouse                                                         | 2008                                      | Particulates             |  |  |  |
|                                    | BH15 | Baghouse                                                         | 2008                                      | Particulates             |  |  |  |
| 33H3                               | BH15 | Baghouse                                                         | 2008                                      | Particulates             |  |  |  |
|                                    | N/A  | N/A                                                              | N/A                                       | N/A                      |  |  |  |
|                                    | BH14 | Baghouse                                                         | 2008                                      | Particulates             |  |  |  |
|                                    | BH14 | Baghouse                                                         | 2008                                      | Particulates             |  |  |  |
|                                    | BH14 | Baghouse                                                         | 2008                                      | Particulates             |  |  |  |
|                                    | BH14 | Baghouse                                                         | 2008                                      | Particulates             |  |  |  |
|                                    | BH14 | Baghouse                                                         | 2008                                      | Particulates             |  |  |  |
| G3ETGR2                            | BH14 | Baghouse                                                         | 2008                                      | Particulates             |  |  |  |

DHEC 2940 (02-2005)



|                       | Control Device Information |                                                                   |                                           |                          |  |  |  |  |  |
|-----------------------|----------------------------|-------------------------------------------------------------------|-------------------------------------------|--------------------------|--|--|--|--|--|
| 19<br>Equipment<br>ID | 3<br>Control<br>Device ID  | 9  Control Device Description (Manufacturer, Name, Model #, etc.) | 10<br>Installation Date<br>(Modification) | 11 Pollutants Controlled |  |  |  |  |  |
| G3ET                  | BH14                       | Baghouse                                                          | 2008                                      | Particulates             |  |  |  |  |  |
|                       | BH14                       | Baghouse                                                          | 2008                                      | Particulates             |  |  |  |  |  |
| G3TL                  | BH14                       | Baghouse                                                          | 2008                                      | Particulates             |  |  |  |  |  |
| G3BL                  | BH1                        | Baghouse                                                          | 2008                                      | Particulates             |  |  |  |  |  |
| G3FSILO1              | N/A                        | N/A                                                               | N/A                                       | N/A                      |  |  |  |  |  |
|                       | N/A                        | N/A                                                               | N/A                                       | N/A                      |  |  |  |  |  |
| G3VSILO1              | BH15                       | Baghouse                                                          | 2008                                      | Particulates             |  |  |  |  |  |
| G3VSILO2              | BH15                       | Baghouse                                                          | 2008                                      | Particulates             |  |  |  |  |  |
|                       | BH15                       | Baghouse                                                          | 2008                                      | Particulates             |  |  |  |  |  |
|                       | BH15                       | Baghouse                                                          | 2008                                      | Particulates             |  |  |  |  |  |
|                       | BH15                       | Baghouse                                                          | 2008                                      | Particulates             |  |  |  |  |  |
|                       | N/A                        | N/A                                                               | 2008                                      | N/A                      |  |  |  |  |  |
|                       | N/A                        | N/A                                                               | 2008                                      | N/A                      |  |  |  |  |  |
|                       | N/A                        | N/A                                                               | 2008                                      | N/A                      |  |  |  |  |  |
|                       | N/A                        | N/A                                                               | 2008                                      | N/A                      |  |  |  |  |  |
|                       | N/A                        | N/A                                                               | 2008                                      | N/A                      |  |  |  |  |  |
|                       | N/A                        | N/A                                                               | 2008                                      | N/A                      |  |  |  |  |  |
|                       | N/A                        | N/A                                                               | 2008                                      | N/A                      |  |  |  |  |  |
|                       |                            | N/A                                                               |                                           | N/A                      |  |  |  |  |  |
|                       | N/A                        | N/A                                                               | 2008                                      | N/A                      |  |  |  |  |  |
| G3MRH3                | N/A                        | N/A                                                               | 2008                                      | N/A                      |  |  |  |  |  |



|                       |                           |                      | Con                  | trol Device I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nformation                           | (continued)                  |            |                                |
|-----------------------|---------------------------|----------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------|------------|--------------------------------|
| 19<br>Equipment<br>ID | 3<br>Control<br>Device ID | 12<br>Capture System | 13<br>Capture<br>(%) | 14<br>Removal /<br>Destruction<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15<br>Method<br>used to<br>Determine | 16<br>Parameter<br>Monitored | Exhaust ID | 18 Comments                    |
| PP1                   | N/A                       | N/A                  | N/A                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                  | N/A                          | 001E112    | None.                          |
| RB                    | N/A                       | N/A                  | N/A                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                  | N/A                          | 001E092    | None.                          |
| EGT                   | N/A                       | N/A                  | N/A                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                  | N/A                          | 001E096    | None.                          |
| PC1                   | N/A                       | N/A                  | N/A                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                  | N/A                          | 001E112    | None.                          |
| PC2                   | N/A                       | N/A                  | N/A                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                  | N/A                          | 001E112    | None.                          |
| EGR1                  | MEAC                      | N/A                  | N/A                  | The second secon | N/A                                  | None.                        | 001E112    | Control installed voluntarily. |
| MER1                  | N/A                       | N/A                  | N/A                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                  | N/A                          | 001E112    | None.                          |
| ICR1                  | MEAC                      | N/A                  | N/A                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                  | None.                        | 001E112    | Control installed voluntarily. |
| RGDT                  | MEAC                      | N/A                  | N/A                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                  | None.                        | 001E112    | Control installed voluntarily. |
| PP1 SJ                | N/A                       | N/A                  | N/A                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                  | None.                        | 001E103    | None.                          |
| PC1 SJ                | N/A                       | N/A                  | N/A                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                  | None.                        | 001E102    | None.                          |
| PC2 SJ                | N/A                       | N/A                  | N/A                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                  | None.                        | 001E001    | None.                          |
| PP2                   | N/A                       | N/A                  | N/A                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                  | N/A                          | 001E112    | None.                          |
| PC3                   | N/A                       | N/A                  | N/A                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                  | N/A                          | 001E112    | None.                          |
| PC4                   | N/A                       | N/A                  | N/A                  | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                  | N/A                          | 001E112    | None.                          |
| EGR2                  | MEAC                      | N/A                  | N/A                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                  | None.                        | 001E112    | Control installed voluntarily. |
| MER2                  | N/A                       | N/A                  | N/A                  | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                  | N/A                          | 001E112    | None.                          |
| ICR2                  | MEAC                      | N/A                  | N/A                  | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                  | None.                        | 001E112    | Control installed voluntarily. |
| PP2 SJ                | N/A                       | N/A                  | N/A                  | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                  | None.                        | 001E097    | None.                          |
| PC3 SJ                | N/A                       | N/A                  | N/A                  | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                  | None.                        | 001E099    | None.                          |
| PC4 SJ                | N/A                       | N/A                  | N/A                  | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                  | None.                        | 001E098    | None.                          |
| EJT1                  | N/A                       | N/A                  | N/A                  | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                  | None.                        | 888E003    | None.                          |
| EJT2                  | N/A                       | N/A                  | N/A                  | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                  | None.                        | 888E004    | None.                          |
| MEOH                  | N/A                       | N/A                  | N/A                  | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                  | N/A                          | 888E005    | None.                          |
| VEGT                  | N/A                       | N/A                  | N/A                  | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                  | N/A                          | 888E006    | None.                          |
| REGT                  | N/A                       | N/A                  | N/A                  | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                  | N/A                          | 888E007    | None.                          |
| DMTT                  | N/A                       | N/A                  | N/A                  | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                  | N/A                          | N/A        | None.                          |
| VSILO                 | BH2                       | Fabric Filter        | 100.00%              | 99.90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vendor                               | Pressure drop                | 888E001    | None.                          |
| FOT1                  | N/A                       | N/A                  | N/A                  | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                  | N/A                          | 888E008    | None.                          |
| FOT2                  | N/A                       | N/A                  | N/A                  | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                  | N/A                          | 888E009    | None.                          |



|                       |           |                   | Con                  | trol Device I                         | nformation                           | ı (continued)                |                    |                |
|-----------------------|-----------|-------------------|----------------------|---------------------------------------|--------------------------------------|------------------------------|--------------------|----------------|
| 19<br>Equipment<br>ID | Device ID | 12 Capture System | 13<br>Capture<br>(%) | 14<br>Removal /<br>Destruction<br>(%) | 15<br>Method<br>used to<br>Determine | 16<br>Parameter<br>Monitored | 17<br>Exhaust ID   | 18<br>Comments |
| G1DT                  | BH13      | Fabric Filter     | 100.00%              |                                       | Estimate                             | Pressure drop                | 888E039            | None.          |
| G1XT                  | N/A       | N/A               | N/A                  |                                       | N/A                                  | N/A                          | 001E057            | None.          |
| G1TN                  | N/A       | N/A               | N/A                  |                                       | N/A                                  | N/A                          | 001E002            | None.          |
| G1GR                  | BH7       | Fabric Filter     | 100.00%              | 99.90%                                | Vendor                               | Pressure drop                | 007E005            | None.          |
| G1ET                  | BH12      | Fabric Filter     | 100.00%              | 99.00%                                | Estimate                             | Pressure drop                | 888E038            | None.          |
| OLS                   | N/A       | N/A               | N/A                  | N/A                                   | N/A                                  | N/A                          | 001E043            | None.          |
| DTOW1                 | BH13      | Fabric Filter     | 100.00%              | 99.90%                                | Estimate                             | Pressure drop                | 888E039            | None.          |
| G2DT                  | BH5       | Fabric Filter     | 100.00%              | 99.90%                                | Vendor                               | Pressure drop                | 007E008            | None.          |
| G2XT                  | N/A       | N/A               | N/A                  | N/A                                   | N/A                                  | N/A                          | 007E073            | None.          |
| G2GR                  | вн6       | Fabric Filter     | 100.00%              | 99.90%                                | Vendor                               | Pressure drop                | 007E007            | None.          |
| G2ET                  | BH11      | Fabric Filter     | 100.00%              | 99.90%                                | Vendor                               | Pressure drop                | 007E006            | None.          |
| G2PC                  | N/A       | N/A               | N/A                  | N/A                                   | N/A                                  | N/A                          | 007E003<br>007E004 | None.          |
| G2GC                  | N/A       | N/A               | N/A                  | N/A                                   | N/A                                  | N/A                          | 007E001<br>007E002 | None.          |
| G2C                   | N/A       | N/A               | N/A                  | N/A                                   | N/A                                  | N/A                          | 008E001            | None.          |
| DTOW2                 | BH5       | Fabric Filter     | 100.00%              | 99.90%                                | Vendor                               | Pressure drop                | 007E008            | None.          |
| CT01                  | BH9       | Fabric Filter     | 100.00%              | 99.90%                                | Vendor                               | Pressure drop                | 888E035            | None.          |
| CT02                  | BH9       | N/A               | N/A                  | N/A                                   | N/A                                  | N/A                          | 888E035            | None.          |
| VSET                  | BH9       | Fabric Filter     | 100.00%              | 99.90%                                | Vendor                               | Pressure drop                | 888E035            | None.          |
|                       | BH4       | Fabric Filter     | 100.00%              | 99.90%                                | Vendor                               | Pressure drop                | 009E014            | None.          |
|                       | BH10      | Fabric Filter     | 100.00%              | 99.00%                                |                                      | Pressure drop                | 888E037            | None.          |
| RVAC                  | BH10      | Fabric Filter     | 100.00%              | 99.00%                                | Vendor                               | Pressure drop                | 888E037            | None.          |
| PTZR                  | N/A       | N/A               | N/A                  | N/A                                   | N/A                                  | N/A                          | N/A                | None.          |
| RSILO                 | внз       | Fabric Filter     | 100.00%              | 99.90%                                | Vendor                               | Pressure drop                | 888E002            | None.          |
|                       | BH1       | Fabric Filter     | 100.00%              | 99.90%                                | Vendor                               | Pressure drop                | 009E015            | None.          |
|                       | N/A       | N/A               | N/A                  | N/A                                   | N/A                                  | N/A                          | 003E001            | None.          |
|                       | N/A       | N/A               | N/A                  | N/A                                   | N/A                                  | N/A                          | 003E002            | None.          |
| BORN                  | N/A       | N/A               | N/A                  | N/A                                   | N/A                                  | N/A                          |                    | None.          |



|                         |           | Section 1         | Con                  | trol Device I                | nformation                           | ı (continued)                |                                                                                                 |             |
|-------------------------|-----------|-------------------|----------------------|------------------------------|--------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------|-------------|
| = 19<br>Equipment<br>ID | Device ID | 12 Capture System | 13<br>Capture<br>(%) | 14 Removal / Destruction (%) | 15<br>Method<br>used to<br>Determine | 16<br>Parameter<br>Monitored | 17<br>Exhaust ID                                                                                | 18 Comments |
| CARO                    | N/A       | N/A               | N/A                  | N/A                          | N/A                                  | N/A                          | 003E004                                                                                         | None.       |
| G3GC1                   | N/A       | N/A               | N/A                  | N/A                          | N/A                                  | N/A                          | 026E005                                                                                         | None.       |
| G3GC2                   | N/A       | N/A               | N/A                  | N/A                          | N/A                                  | N/A                          | 026E019                                                                                         | None.       |
| G3C                     | N/A       | N/A               | N/A                  | N/A                          | N/A                                  | N/A                          | 026E010<br>026E011<br>026E012<br>026E013<br>026E014<br>026E015<br>026E016<br>026E027<br>026E028 | None.       |
|                         | BH15      | Fabric Filter     | 100.00%              | 99.00%                       | Estimate                             | Pressure drop                |                                                                                                 | None.       |
|                         | BH15      | Fabric Filter     | 100.00%              | 99.00%                       | Estimate                             | Pressure drop                |                                                                                                 | None.       |
|                         | N/A       | N/A               | N/A                  | N/A                          |                                      | N/A                          |                                                                                                 | None.       |
|                         | N/A       | N/A               | N/A                  | N/A                          | N/A                                  | N/A                          |                                                                                                 | None.       |
| G3XT3                   | N/A       | N/A               | N/A                  | N/A                          |                                      | N/A                          |                                                                                                 | None.       |
| G3XT4                   | N/A       | N/A               | N/A                  | N/A                          |                                      | N/A                          |                                                                                                 | None.       |
| G3D                     | BH15      | Fabric Filter     | 100.00%              |                              | Estimate                             | Pressure drop                |                                                                                                 | None.       |
| G3H1                    | BH15      | Fabric Filter     | 100.00%              |                              | Estimate                             | Pressure drop                |                                                                                                 | None.       |
| G3H2                    | BH15      | Fabric Filter     | 100.00%              |                              | Estimate                             | Pressure drop                |                                                                                                 | None.       |
| G3H3                    | BH15      | Fabric Filter     | 100.00%              |                              | Estimate                             | Pressure drop                |                                                                                                 | None.       |
|                         |           | N/A               | N/A                  | N/A                          | N/A                                  | N/A                          | 026F021                                                                                         | None.       |
|                         | BH14      | Fabric Filter     | 100.00%              | 99.00%                       | Estimate                             | Pressure drop                |                                                                                                 | None.       |
|                         | BH14      | Fabric Filter     | 100.00%              |                              | Estimate                             | Pressure drop                |                                                                                                 | None.       |
|                         | BH14      | Fabric Filter     | 100.00%              | 99.00%                       | Estimate                             | Pressure drop                |                                                                                                 | None.       |
|                         |           | Fabric Filter     | 100.00%              | 99.00%                       |                                      | Pressure drop                |                                                                                                 | None.       |
|                         | BH14      | Fabric Filter     | 100.00%              |                              |                                      | Pressure drop                |                                                                                                 | None.       |
| G3ETGR2                 | BH14      | Fabric Filter     | 100.00%              |                              | Estimate                             | Pressure drop                |                                                                                                 | None.       |

DHEC 2940 (02-2005)



|                       |                           |                      | Con                  | trol Device I                | nformation                           | n (continued)                |               |          |
|-----------------------|---------------------------|----------------------|----------------------|------------------------------|--------------------------------------|------------------------------|---------------|----------|
| 19<br>Equipment<br>ID | 3<br>Control<br>Device ID | 12<br>Capture System | 13<br>Capture<br>(%) | 14 Removal / Destruction (%) | 15<br>Method<br>used to<br>Determine | 16<br>Parameter<br>Monitored | 17 Exhaust ID | Comments |
| G3ET                  | BH14                      | Fabric Filter        | 100.00%              | 99.00%                       | Estimate                             | Pressure drop                | 026E006       | None.    |
| G3FS                  | BH14                      | Fabric Filter        | 100.00%              | 99.00%                       | Estimate                             | Pressure drop                | 026E006       | None.    |
|                       | BH14                      | Fabric Filter        | 100.00%              | 99.00%                       | Estimate                             | Pressure drop                | 026E006       | None.    |
|                       | BH1                       | Fabric Filter        | 100.00%              | 99.90%                       | Estimate                             | Pressure drop                | 009E015       | None.    |
|                       | N/A                       | N/A                  | N/A                  | N/A                          | N/A                                  | N/A                          | N/A           | None.    |
| G3FSILO2              | N/A                       | N/A                  | N/A                  | N/A                          | N/A                                  | N/A                          | N/A           | None.    |
| G3VSILO1              | BH15                      | Fabric Filter        | 100.00%              | 99.00%                       | Estimate                             | Pressure drop                | 026H007       | None.    |
|                       | BH15                      | Fabric Filter        | 100.00%              | 99.00%                       | Estimate                             | Pressure drop                | 026H007       | None.    |
| G3VSILO3              | BH15                      | Fabric Filter        | 100.00%              |                              | Estimate                             | Pressure drop                | 026H007       | None.    |
| G3VSILO4              | BH15                      | Fabric Filter        | 100.00%              | 99.00%                       | Estimate                             | Pressure drop                | 026H007       | None.    |
|                       | BH15                      | Fabric Filter        | 100.00%              |                              | Estimate                             | N/A                          | 026H007       | None.    |
| G3MRTK1               | N/A                       | N/A                  | N/A                  | N/A                          | N/A                                  | N/A                          | 026E0030      | None.    |
| G3MRTK2               | N/A                       | N/A                  | N/A                  | N/A                          | N/A                                  | N/A                          | 026E0030      | None.    |
| G3MRTK3               | N/A                       | N/A                  | N/A                  | N/A                          | N/A                                  | N/A                          | 026E0030      | None.    |
|                       | N/A                       | N/A                  | N/A                  | N/A                          | N/A                                  | N/A                          | 026E0030      | None.    |
|                       | N/A                       | N/A                  | N/A                  | N/A                          | N/A                                  | N/A                          | 026E0030      | None.    |
| G3MRSC2               | N/A                       | N/A                  | N/A                  | N/A                          | N/A                                  | N/A                          | 026E0030      | None.    |
| G3MRSC3               | N/A                       | N/A                  | N/A                  | N/A                          | N/A                                  | N/A                          | 026E0030      | None.    |
| G3MRH1                | N/A                       | N/A                  | N/A                  | N/A                          | N/A                                  | N/A                          | 026E0030      | None.    |
| G3MRH2                | N/A                       | N/A                  | N/A                  | N/A                          | N/A                                  | N/A                          | 026E0030      | None.    |
| G3MRH3                | N/A                       | N/A                  | N/A                  | N/A                          | N/A                                  | N/A                          | 026E0030      | None.    |



|                          |                       | Equipm                                            | nent Do         | escript                   | ion         |                           |                  |                            |
|--------------------------|-----------------------|---------------------------------------------------|-----------------|---------------------------|-------------|---------------------------|------------------|----------------------------|
| 1<br>Emission<br>Unit ID | 19<br>Equipment<br>ID | Equipment Description                             |                 | dation<br>ate<br>ication) |             | 3<br>Control<br>Device ID | 17<br>Exhaust ID | 23 Design Capacity (units) |
|                          |                       | Prepolymer #1                                     | 1972            |                           | Unavailable | N/A                       | 001E112          |                            |
|                          |                       | Blending/Mixing (Shared with Train 2)             | 1972            | <del>(N/A)</del>          | N/A         | N/A                       | 001E092          |                            |
|                          | EGT                   | Ethylene Glycol Day Tank (Shared with Train 2)    |                 |                           | Unavailable | N/A                       | 001E096          |                            |
|                          |                       | Polycon #1 (includes Spray Condenser)             | 1972            | (1994)                    | Unavailable | N/A                       | 001E112          |                            |
| 01                       | PC2                   | Polycon #2 (includes Spray Condenser)             | 1972            | (1994)                    | Unavailable | N/A                       | 001E112          |                            |
|                          | EGR1                  | Train 1 REG Receiver                              | 1983            | (N/A)                     | N/A         | MEAC                      | 001E112          |                            |
|                          | MER1                  | Train 1 MeOH Receiver                             | 1983            | (N/A)                     | N/A         | N/A                       | 001E112          |                            |
|                          | ICR1                  | Train 1 Intermediate Cut Receiver                 | 1990            | (N/A)                     | N/A         | MEAC                      | 001E112          |                            |
|                          | RGDT                  | Byproduct EG Day Tank (Shard with Train 2)        | 1994            | (N/A)                     | N/A         | MEAC                      | 001E112          |                            |
|                          | PP1 SJ                | PP1 Steam Jet Vent                                | 1972            | (N/A)                     | N/A         | N/A                       | 001E103          |                            |
| 01A                      | PC1 SJ                | PC1 Steam Jet Vent                                | 1972            | (N/A)                     | N/A         | N/A                       | 001E102          |                            |
|                          | PC2 SJ                | PC2 Steam Jet Vent                                | 1972            | (N/A)                     | N/A         | N/A                       | 001E001          |                            |
| PI                       | PP2                   | Esterification System #2                          | 1972            | (1994)                    | Unavailable | N/A                       | 001E112          |                            |
|                          | PC3                   | Polycon #3 (includes Spray Condenser)             | 1972            | (1994)                    | Unavailable | N/A                       | 001E112          |                            |
| 02                       | PC4                   | Polycon #4 (includes Spray Condenser)             | 1972            | (1994)                    | Unavailable | N/A                       | 001E112          |                            |
| UZ                       | EGR2                  | Train 2 REG Receiver                              | 1983            | (N/A)                     | N/A         | MEAC                      | 001E112          |                            |
|                          | MER2                  | Train 2 MeOH Receiver                             | 1983            | (N/A)                     | N/A         | N/A                       | 001E112          |                            |
|                          | ICR2                  | Train 2 Intermediate Cut Receiver                 | 1990            | (N/A)                     | N/A         | MEAC                      | 001E112          |                            |
|                          | PP2 SJ                | PP2 Steam Jet Vent                                | 1972            | (N/A)                     | N/A         | N/A                       | 001E097          |                            |
| 02A                      | PC3 SJ                | PC3 Steam Jet Vent                                | 1972            | (N/A)                     | N/A         | N/A                       | 001E099          |                            |
|                          | PC4 SJ                | PC4 Steam Jet Vent                                | 1972            | (N/A)                     | N/A         | N/A                       | 001E098          |                            |
| 03                       | EJT1                  | Resin Train Cooling Tower                         | 1972            | (1982)                    | Unavailable | N/A                       | 888E003          |                            |
|                          | EJT2                  | Vertical Ejector Tower 2                          | <del>1995</del> | <del>(N/A)</del>          | N/A         | N/A                       | 888E004          |                            |
|                          | MEOH                  | Byproduct Methanol Tank                           | 1972            | (N/A)                     | N/A         | N/A                       | 888E005          |                            |
| 04                       | VEGT                  | Virgin ET Tank                                    | 1972            | (N/A)                     | N/A         | N/A                       | 888E006          |                            |
| U <del>4</del>           | REGT                  | Byproduct EG Tank                                 | 1972            | (N/A)                     | N/A         | N/A                       | 888E007          |                            |
|                          | DMTT                  | DMT Tank                                          | 1994            | (N/A)                     | N/A         | N/A                       | N/A              |                            |
|                          | VSILO                 | Virgin Silo Airveying incl. Master Batch and Virg |                 | (1982)                    | Unavailable | BH2                       | 888E001          |                            |
| 05                       | FOT1                  | Distillate Fuel Oil Tank                          | 1980            | (N/A)                     | N/A         | N/A                       | 888E008          |                            |
|                          | FOT2                  | Distillate Fuel Oil Tank                          | 1972            | (N/A)                     | N/A         | N/A                       | 888E009          |                            |



|                                    |        | Equipr                                                          | nent Descri                                 | ption                       | . 00                      |                    |                            |
|------------------------------------|--------|-----------------------------------------------------------------|---------------------------------------------|-----------------------------|---------------------------|--------------------|----------------------------|
| 1 19 Emission Equipment Unit ID ID |        | 20 Equipment Description                                        | 21<br>Installation<br>Date<br>(modification | 22<br>Mod.                  | 3<br>Control<br>Device ID | 17<br>Exhaust ID   | 23 Design Capacity (units) |
|                                    | G1DT   | G1 Dryer Tower                                                  | 1972 (N/A                                   | ) N/A                       | BH13                      | 888E039            |                            |
|                                    | G1XT   | G1 Extruder                                                     | 1972 (N/A                                   | ) N/A                       | N/A                       | 001E057            |                            |
|                                    | G1TN   | G1 Tender                                                       | 1972 (N/A                                   | ) N/A                       | N/A                       | 001E002            |                            |
| 06                                 | G1GR   | G1 Grinder Airveying                                            | 1972 (N/A                                   | ) N/A                       | BH7                       | 007E005            |                            |
|                                    | G1ET   | G1 Edge Trimmer including Airveying                             | 1972 (N/A                                   |                             | BH12                      | 888E038            |                            |
|                                    | OLS    | <del>OLS</del>                                                  | 1972 (N/A                                   | N/A                         | N/A                       | 001E043            |                            |
|                                    | DTOW1  | G1 Dryer Airveying                                              | 2006 (N/A                                   |                             | BH13                      | 888E039            |                            |
|                                    | G2DT   | G2 Dryer Tower                                                  | 1982 (N/A                                   |                             | BH5                       | 007E008            |                            |
|                                    |        | G2 Extruder                                                     | 1982 (N/A                                   |                             | N/A                       | 007E073            |                            |
|                                    | G2GR   | G2 Grinder including Airveying                                  |                                             | ) Unavailable               | BH6                       | 007E073            |                            |
|                                    | G2ET   | G2 Edge Trim including Airveying                                |                                             | ) Unavailable               | BH11                      | 007E006            |                            |
| 07                                 | G2PC   | P Coater                                                        | 1982 (N/A                                   |                             | N/A                       | 007E003            |                            |
|                                    | G2GC   | G Coater                                                        | 1982 (N/A                                   | N/A                         | N/A                       | 007E004<br>007E001 |                            |
|                                    | G2C    | C Oven                                                          | 1982 (N/A                                   | N/A                         | N/A                       | 007E002            |                            |
|                                    |        | G2 Dryer Airveying                                              | 1972 (1982                                  |                             |                           | 008E001            |                            |
|                                    | CT01   | Cut-to-size 1 with Collection Cyclone Separator                 | 1994 (N/A                                   |                             | BH5                       | 007E008            |                            |
| 08                                 | CT02   | Cut-to-size 2 with Collection Cyclone Separator                 | 1994 (N/A                                   |                             | BH9                       | 888E035            |                            |
|                                    | VSET   | VSET Edge                                                       | 1996 (N/A                                   |                             | BH9                       | 888E035            |                            |
|                                    |        | Flake Silo including Airveying                                  | 1972 (1982                                  |                             | BH9                       | 888E035            |                            |
|                                    | RBFG   | PET Reclaim Fugitives                                           | 1998 (N/A)                                  | ) <i>Unavailable</i><br>N/A | BH4                       | 009E014            |                            |
| 09                                 |        | PET Reclaim Vacuum                                              | 1998 (N/A)                                  |                             | BH10                      | 888E037            |                            |
| υ <del>υ</del>                     |        | Reclaim Pellitizers                                             |                                             | N/A                         | BH10                      | 888E037            |                            |
|                                    | RSILO  | Reclaim Silo Airveying including Reclaim and other Virgin Silos | <u>\`</u> \                                 | N/A<br>Unavailable          | N/A<br>BH3                | N/A<br>888E002     |                            |
| 10                                 |        | Box/Tote Airveying                                              |                                             |                             |                           |                    |                            |
|                                    |        | 57.9 MMBtu/hr Steam Boiler #1                                   |                                             |                             | BH1                       | 009E015            |                            |
|                                    |        | 41.4 MMBtu/hr Steam Boiler #2                                   |                                             | Unavailable                 | N/A                       | 003E001            |                            |
|                                    |        | 18.0 MMBth/hr Born T-66 Oil heater                              |                                             | Unavailable                 | N/A                       | 003E002            |                            |
|                                    | 201111 | 10.0 WINDUITH DOTT 1-00 OII neater                              | 1972 (2001                                  | Unavailable                 | N/A                       | 003E003            |                            |

DHEC 2940 (02-2005)



|                                       |         | Equ                              | uipment D                        | escript | tion                                   |                           | A STATE OF THE STA |                                  |
|---------------------------------------|---------|----------------------------------|----------------------------------|---------|----------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 1 19<br>Emission<br>Unit ID Equipment |         | 20 Equipment Description         | Installation Date (modification) |         | 22<br>Mod.<br>Description              | 3<br>Control<br>Device ID | D Exhaust ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23<br>Design Capacity<br>(units) |
| 14                                    | CARO    | 28.0 MMBtu/hr Carotek Oil Heater | 1982                             | (2001)  | Unavailable                            | N/A                       | 003E004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |
|                                       | G3GC1   | G3 Coater 1                      | 2008                             | (N/A)   | N/A                                    | N/A                       | 026E005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |
|                                       | G3GC2   | G3 Coater 2 (Future)             | TBD                              | (N/A)   | N/A                                    | N/A                       | 026E019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |
|                                       | G3C     | G3 Oven                          | 2008                             | (N/A)   | N/A                                    | N/A                       | 026E010<br>026E011<br>026E012<br>026E013<br>026E014<br>026E015<br>026E016<br>026E027<br>026E028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
|                                       |         | G3 Feed Hopper/Aspirator 1       | 2008                             | (N/A)   | N/A                                    | BH15                      | 026E007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |
|                                       | G3ASP2  | G3 Feed Hopper/Aspirator 2       | 2008                             | (N/A)   | N/A                                    | BH15                      | 026E007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |
|                                       |         | G3 Extruder 1                    | 2008                             |         | N/A                                    | N/A                       | 026E007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |
|                                       |         | G3 Extruder 2                    | 2008                             | (N/A)   | N/A                                    | N/A                       | 026E007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |
|                                       |         | G3 Extruder 3                    | 2008                             |         | N/A                                    | N/A                       | 026E007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |
|                                       |         | G3 Extruder 4                    | 2008                             |         | N/A                                    | N/A                       | 026E007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |
|                                       |         | G3 Pellet Dryer                  | 2008                             | (N/A)   | N/A                                    | BH15                      | 026E007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |
|                                       |         | G3 Resin Charging Hopper 1       | 2008                             | (N/A)   | N/A                                    | BH15                      | 026E007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |
|                                       |         | G3 Resin Charging Hopper 2       | 2008                             | (N/A)   | N/A                                    | BH15                      | 026E007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |
|                                       | G3H3    | G3 Resin Charging Hopper 3       | 2008                             | (N/A)   | N/A                                    | BH15                      | 026E007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |
| į                                     |         | G3 Die Casting Wheel             | 2008                             | (N/A)   | N/A                                    | N/A                       | 026E021<br>026E023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |
|                                       |         | G3 Floor Scrap Grinder 1         | 2008                             | (N/A)   | N/A                                    | BH14                      | 026E006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |
| 15                                    |         | G3 Floor Scrap Grinder 2         | 2008                             |         |                                        | BH14                      | 026E006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |
|                                       |         | G3 Floor Scrap Grinder 3         | 2008                             |         | ······································ | BH14                      | 026E006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |
|                                       |         | G3 Floor Scrap Grinder 4         | 2008                             |         |                                        | BH14                      | 026E006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |
|                                       |         | G3 Edge Trim Grinder 1           | 2008                             |         |                                        | BH14                      | 026E006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |
| ſ                                     | G3ETGR2 | G3 Edge Trim Grinder 2           | 2008                             |         |                                        | BH14                      | 026E006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |

DHEC 2940 (02-2005)



| 11.74               | 19              | 20                       | 21                               | 22               | 3                    | 17         | 23                         |  |
|---------------------|-----------------|--------------------------|----------------------------------|------------------|----------------------|------------|----------------------------|--|
| Emission<br>Unit ID | Equipment<br>ID | Equipment Description    | Installation Date (modification) | Mod. Description | Control<br>Device ID | Exhaust ID | Design Capacity<br>(units) |  |
|                     | G3ET            | G3 Edge Trim Airveying   | 2008 (N/A)                       | N/A              | BH14                 | 026E006    |                            |  |
|                     | G3FS            | G3 Floor Scrap Airveying | 2008 (N/A)                       | N/A              | BH14                 | 026E006    |                            |  |
|                     | G3TL            | G3 Flake Truck Loadout   | 2008 (N/A)                       | N/A              | BH14                 | 026E006    |                            |  |
|                     | G3BL            | G3 Flake Box Loadout     | 2008 (N/A)                       | N/A              | BH1                  | 009E015    |                            |  |
|                     |                 | Clear Flake Silo         | 2008 (N/A)                       | N/A              | N/A                  | N/A        |                            |  |
|                     | G3FSILO2        | Color Flake Silo         | 2008 (N/A)                       | N/A              | N/A                  | N/A        |                            |  |
|                     |                 | G3 Pellet Silo 1         | 2008 (N/A)                       | N/A              | BH15                 | 026H007    |                            |  |
|                     | G3VSILO2        | G3 Pellet Silo 2         | 2008 (N/A)                       | N/A              | BH15                 | 026H007    |                            |  |
|                     |                 | G3 Pellet Silo 3         | 2008 (N/A)                       | N/A              | BH15                 | 026H007    |                            |  |
|                     |                 | G3 Pellet Silo 4         | 2008 (N/A)                       | N/A              | BH15                 | 026H007    |                            |  |
|                     |                 | G3 Pellet Silo 5         | 2008 (N/A)                       | N/A              | BH15                 | 026H007    |                            |  |
|                     | G3MRTK1         | G3 Mix Room Tank 1       | 2008 (N/A)                       | N/A              | N/A                  | 026E0030   |                            |  |
|                     |                 | G3 Mix Room Tank 2       | 2008 (N/A)                       | N/A              | N/A                  | 026E0030   |                            |  |
|                     |                 | G3 Mix Room Tank 3       | 2008 (N/A)                       | N/A              | N/A                  | 026E0030   |                            |  |
|                     |                 | G3 Mix Room Tank 4       | 2008 (N/A)                       | N/A              | N/A                  | 026E0030   |                            |  |
|                     |                 | G3 Mix Room Storage 1    | 2008 (N/A)                       | N/A              | N/A                  | 026E0030   |                            |  |
|                     |                 | G3 Mix Room Storage 2    | 2008 (N/A)                       | N/A              | N/A                  | 026E0030   |                            |  |
|                     |                 | G3 Mix Room Storage 3    | 2008 (N/A)                       | N/A              | N/A                  | 026E0030   |                            |  |
|                     |                 | G3 Mix Room Hood 1       | 2008 (N/A)                       | N/A              | N/A                  | 026E0030   |                            |  |
|                     |                 | G3 Mix Room Hood 2       | 2008 (N/A)                       | N/A              | N/A                  | 026E0030   |                            |  |
|                     | G3MRH3          | G3 Mix Room Hood 3       | 2008 (N/A)                       | N/A              | N/A                  | 026E0030   |                            |  |



|                       |                                           | Equipment                                   | Description                                 |                |
|-----------------------|-------------------------------------------|---------------------------------------------|---------------------------------------------|----------------|
| 19<br>Equipment<br>ID | 24 Primary Fuel Combusted (if applicable) | 25 Secondary Fuel Combusted (if applicable) | 26 Construction Permit ID or Exemption Date | 27<br>Comments |
| PP1                   | N/A                                       | N/A                                         | N/A                                         | N/A            |
| RB                    | N/A                                       | N/A                                         | N/A                                         | N/A            |
| EGT                   | N/A                                       | N/A                                         | N/A                                         | N/A            |
| PC1                   | N/A                                       | N/A                                         | N/A                                         | N/A            |
| PC2                   | N/A                                       | N/A                                         | N/A                                         | N/A            |
| EGR1                  | N/A                                       | N/A                                         | N/A                                         | N/A            |
| MER1                  | N/A                                       | N/A                                         | N/A                                         | N/A            |
| ICR1                  | N/A                                       | N/A                                         | N/A                                         | N/A            |
| RGDT                  | N/A                                       | N/A                                         | N/A                                         | N/A            |
| PP1 SJ                | N/A                                       | N/A                                         | N/A                                         | N/A            |
| PC1 SJ                | N/A                                       | N/A                                         | N/A                                         | N/A            |
| PC2 SJ                | N/A                                       | N/A                                         | N/A                                         | N/A            |
| PP2                   | N/A                                       | N/A                                         | N/A                                         | N/A            |
| PC3                   | N/A                                       | N/A                                         | N/A                                         | N/A            |
| PC4                   | N/A                                       | N/A                                         | N/A                                         | N/A            |
| EGR2                  | N/A                                       | N/A                                         | N/A                                         | N/A            |
| MER2                  | N/A                                       | N/A                                         | N/A                                         | N/A            |
| ICR2                  | N/A                                       | N/A                                         | N/A                                         | N/A            |
| PP2 SJ                | N/A                                       | N/A                                         | N/A                                         | N/A            |
| PC3 SJ                | N/A                                       | N/A                                         | N/A                                         | N/A            |
| PC4 SJ                | N/A                                       | N/A                                         | N/A                                         | N/A            |
| EJT1                  | N/A                                       | N/A                                         | N/A                                         | N/A            |
| EJT2                  | N/A                                       | N/A                                         | N/A                                         | N/A            |
| MEOH                  | N/A                                       | N/A                                         | N/A                                         | N/A            |
| VEGT                  | N/A                                       | N/A                                         | N/A                                         | N/A            |
| REGT                  | N/A                                       | N/A                                         | N/A                                         | N/A            |
| DMTT                  | N/A                                       | N/A                                         | N/A                                         | N/A            |
| VSILO                 | N/A                                       | N/A                                         | N/A                                         | N/A            |
| FOT1                  | N/A                                       | N/A                                         | N/A                                         | N/A            |
| FOT2                  | N/A                                       | N/A                                         | N/A                                         | N/A            |



| Equipment Description |                                                 |                                                   |     |                         |  |  |  |
|-----------------------|-------------------------------------------------|---------------------------------------------------|-----|-------------------------|--|--|--|
| 19<br>Equipment<br>ID | 24<br>Primary Fuel Combusted<br>(if applicable) | 24 25 ary Fuel Combusted Secondary Fuel Combusted |     | 27<br>Comments          |  |  |  |
| G1DT                  | N/A                                             | N/A                                               | N/A | N/A                     |  |  |  |
| G1XT                  | N/A                                             | N/A                                               | N/A | N/A                     |  |  |  |
| G1TN                  | N/A                                             | N/A                                               | N/A | N/A                     |  |  |  |
|                       | N/A                                             | N/A                                               | N/A | N/A                     |  |  |  |
|                       | N/A                                             | N/A                                               | N/A | N/A                     |  |  |  |
| OLS                   | N/A                                             | N/A                                               | N/A | N/A                     |  |  |  |
|                       | N/A                                             | N/A                                               | N/A | N/A                     |  |  |  |
|                       | N/A                                             | N/A                                               | N/A | N/A                     |  |  |  |
|                       | N/A                                             | N/A                                               | N/A | N/A                     |  |  |  |
|                       | N/A                                             | N/A                                               | N/A | N/A                     |  |  |  |
| G2ET                  | N/A                                             | N/A                                               | N/A | N/A                     |  |  |  |
| G2PC                  | N/A                                             | N/A                                               | N/A | N/A                     |  |  |  |
| G2GC                  | N/A                                             | N/A                                               | N/A | N/A                     |  |  |  |
| G2C                   | N/A                                             | N/A                                               | N/A | N/A                     |  |  |  |
| DTOW2                 | N/A                                             | N/A                                               | N/A | N/A                     |  |  |  |
| CT01                  | N/A                                             | N/A                                               | N/A | N/A                     |  |  |  |
| CT02                  | N/A                                             |                                                   | N/A | N/A                     |  |  |  |
| /SET                  | N/A                                             | N/A                                               | N/A | N/A                     |  |  |  |
| SILO                  | N/A                                             | N/A                                               | N/A | N/A                     |  |  |  |
| RBFG                  | N/A                                             | N/A                                               | N/A | N/A                     |  |  |  |
| RVAC                  | N/A                                             |                                                   | N/A | N/A                     |  |  |  |
| PTZR                  | N/A                                             |                                                   | N/A | N/A                     |  |  |  |
|                       | N/A                                             |                                                   | N/A | N/A                     |  |  |  |
|                       | N/A                                             | N/A                                               | N/A | N/A                     |  |  |  |
| SB1                   | Natural Gas                                     |                                                   | N/A |                         |  |  |  |
|                       | Natural Gas                                     |                                                   | N/A | No Comments             |  |  |  |
|                       | Natural Gas                                     |                                                   | N/A | No Comments No Comments |  |  |  |

DHEC 2940 (02-2005)



|                       | Equipment Description                     |                                             |                                             |                                    |  |  |  |  |
|-----------------------|-------------------------------------------|---------------------------------------------|---------------------------------------------|------------------------------------|--|--|--|--|
| 19<br>Equipment<br>ID | 24 Primary Fuel Combusted (if applicable) | 25 Secondary Fuel Combusted (if applicable) | 26 Construction Permit ID or Exemption Date | 27<br>Comments                     |  |  |  |  |
| CARO                  | Natural Gas                               | No. 2 Fuel Oil                              | N/A                                         | Fuel oil limit of 1,098,950 gal/yr |  |  |  |  |
| G3GC1                 | N/A                                       | N/A                                         | N/A                                         | N/A                                |  |  |  |  |
| G3GC2                 | N/A                                       | N/A                                         | N/A                                         | N/A                                |  |  |  |  |
| G3C                   | N/A                                       | N/A                                         | N/A                                         | N/A                                |  |  |  |  |
| G3ASP1                | N/A                                       | N/A                                         | N/A                                         | N/A                                |  |  |  |  |
| G3ASP2                | N/A                                       | N/A                                         | N/A                                         | N/A                                |  |  |  |  |
| G3XT1                 | N/A                                       | N/A                                         | N/A                                         | N/A                                |  |  |  |  |
| G3XT2                 | N/A                                       | N/A                                         | N/A                                         | N/A                                |  |  |  |  |
| G3XT3                 | N/A                                       | N/A                                         | N/A                                         | N/A                                |  |  |  |  |
| G3XT4                 | N/A                                       | N/A                                         | N/A                                         | N/A                                |  |  |  |  |
| G3D                   | N/A                                       | N/A                                         | N/A                                         | N/A                                |  |  |  |  |
| G3H1                  | N/A                                       | N/A                                         | N/A                                         | N/A                                |  |  |  |  |
| G3H2                  | N/A                                       | N/A                                         | N/A                                         | N/A                                |  |  |  |  |
| G3H3                  | N/A                                       | N/A                                         | N/A                                         | N/A                                |  |  |  |  |
| G3CW                  | N/A                                       | N/A                                         | N/A                                         | N/A                                |  |  |  |  |
|                       | N/A                                       | N/A                                         | N/A                                         | N/A                                |  |  |  |  |
|                       | N/A                                       | N/A                                         | N/A                                         | N/A                                |  |  |  |  |
|                       | N/A                                       | N/A                                         | N/A                                         | N/A                                |  |  |  |  |
|                       | N/A                                       | N/A                                         | N/A                                         | N/A                                |  |  |  |  |
|                       | N/A                                       | N/A                                         | N/A                                         | N/A                                |  |  |  |  |
| G3ETGR2               | N/A                                       | N/A                                         | N/A                                         | N/A                                |  |  |  |  |



|                       | Equipment Description                     |                                             |                                             |                |  |  |  |  |
|-----------------------|-------------------------------------------|---------------------------------------------|---------------------------------------------|----------------|--|--|--|--|
| 19<br>Equipment<br>ID | 24 Primary Fuel Combusted (if applicable) | 25 Secondary Fuel Combusted (if applicable) | 26 Construction Permit ID or Exemption Date | 27<br>Comments |  |  |  |  |
| G3ET                  | N/A                                       | N/A                                         | N/A                                         | N/A            |  |  |  |  |
| G3FS                  | N/A                                       | N/A                                         | N/A                                         | N/A            |  |  |  |  |
| G3TL                  | N/A                                       | N/A                                         | N/A                                         | N/A            |  |  |  |  |
| G3BL                  | N/A                                       | N/A                                         | N/A                                         | N/A            |  |  |  |  |
| G3FSILO1              | N/A                                       | N/A                                         | N/A                                         | N/A            |  |  |  |  |
| G3FSILO2              | N/A                                       | N/A                                         | N/A                                         | N/A            |  |  |  |  |
| G3VSILO1              | N/A                                       | N/A                                         | N/A                                         | N/A            |  |  |  |  |
| G3VSILO2              | N/A                                       | N/A                                         | N/A                                         | N/A            |  |  |  |  |
| G3VSILO3              | N/A                                       | N/A                                         | N/A                                         | N/A            |  |  |  |  |
| G3VSILO4              | N/A                                       | N/A                                         | N/A                                         | N/A            |  |  |  |  |
|                       | N/A                                       | N/A                                         | N/A                                         | N/A            |  |  |  |  |
| G3MRTK1               | N/A                                       | N/A                                         | N/A                                         | N/A            |  |  |  |  |
| G3MRTK2               | N/A                                       | N/A                                         | N/A                                         | N/A            |  |  |  |  |
|                       | N/A                                       | N/A                                         | N/A                                         | N/A            |  |  |  |  |
|                       | N/A                                       | N/A                                         | N/A                                         | N/A            |  |  |  |  |
|                       | N/A                                       | N/A                                         | N/A                                         | N/A            |  |  |  |  |
|                       | N/A                                       | N/A                                         | N/A                                         | N/A            |  |  |  |  |
| G3MRSC3               | N/A                                       | N/A                                         | N/A                                         | N/A            |  |  |  |  |
| G3MRH1                | N/A                                       | N/A                                         | N/A                                         | N/A            |  |  |  |  |
| G3MRH2                | N/A                                       | N/A                                         | N/A                                         | N/A            |  |  |  |  |
| G3MRH3                | N/A                                       | N/A                                         | N/A                                         | N/A            |  |  |  |  |



# Title V Permit Application Emission Data for Regulated Pollutants – Form D Bureau of Air Quality Page 1 of 1

#### Please Refer to Instruction / Definitions Pages Before Completing This Form

| Emission Unit ID:     (If the emission unit is on the Insignificant | 2. Exhaust Point ID (if 3. Pollutant:     | 4. CAS Number<br>(if applicable): | 5. Type of Pollutant: | 6. Maximum<br>Uncontrolled |              | 7. Maximum<br>Controlled |         |       |
|---------------------------------------------------------------------|-------------------------------------------|-----------------------------------|-----------------------|----------------------------|--------------|--------------------------|---------|-------|
| Activity List proceed to Forms G & F)                               | applicable)                               |                                   | (ii applicable).      |                            | (lb/hr)      | (TPY)                    | (lb/hr) | (TPY) |
|                                                                     |                                           | PLEASE REFE                       | R TO APPENDIX B FOR E | │<br>MISSIONS CALCULATION: | <br>S        |                          |         |       |
|                                                                     |                                           |                                   |                       |                            |              |                          |         |       |
|                                                                     |                                           |                                   |                       |                            |              |                          |         |       |
|                                                                     |                                           |                                   |                       |                            |              |                          |         |       |
| 1. Emission Unit ID:                                                | 2. Exhaust<br>Point ID (if<br>applicable) | 3. Pollutant:                     | 8. Estim              | ation Method:              | 9. Comments: |                          |         |       |
|                                                                     |                                           | PLEASE REFEI                      | R TO APPENDIX B FOR E | MISSIONS CALCULATIONS      | 3            |                          |         |       |
|                                                                     |                                           |                                   |                       |                            |              |                          |         |       |
|                                                                     |                                           |                                   |                       |                            |              |                          |         |       |
|                                                                     |                                           |                                   |                       |                            |              |                          |         |       |

Document Date: 6/24/2010 1:49:05 PM



#### Title V Permit Application Facility Wide Information – Form E Bureau of Air Quality

#### Please Refer to Instruction / Definitions Pages Before Completing This Form

|                                           | FACILI                   | TY WIDE RA | AW MATERIALS AND PRODUCTS              |                         |                    |        |
|-------------------------------------------|--------------------------|------------|----------------------------------------|-------------------------|--------------------|--------|
| 1. Raw Materials                          | 2. Quantity              |            | 3. Products (List Products in order of | 4.<br>SIC/NAICS<br>Code | 5. Production Rate |        |
| Ethylene glycol                           | 16,000,000               | Lb/yr      | major to minor) Polyester film         | 3081                    | 40,000,000         | Lb/yr  |
| Ethylene glycol<br>Dimethyl terephthalate | 16,000,000<br>35,000,000 | Lb/yr      |                                        |                         | 40,000,000         | LIJ/y1 |
|                                           |                          |            |                                        |                         |                    |        |
|                                           |                          |            |                                        |                         |                    |        |
|                                           |                          |            |                                        |                         |                    |        |
|                                           |                          |            |                                        |                         |                    |        |
|                                           |                          |            |                                        |                         |                    |        |
|                                           |                          |            |                                        |                         |                    |        |
|                                           |                          |            |                                        |                         |                    |        |
|                                           |                          |            |                                        |                         |                    |        |
|                                           |                          |            |                                        |                         |                    |        |
|                                           |                          |            |                                        |                         |                    |        |
|                                           |                          |            |                                        |                         |                    |        |
|                                           |                          |            |                                        |                         |                    | -      |
|                                           |                          |            |                                        |                         |                    |        |



# Title V Permit Application Facility Wide Total Emissions – Form F Bureau of Air Quality Page 1 of 1

#### Please Refer to Instruction / Definitions Pages Before Completing This Form (Include Insignificant Activity Emissions in Facility Wide Totals)

|                   | FACILITY WIDE TOTAL        | EMISSIONS                          |                               |  |
|-------------------|----------------------------|------------------------------------|-------------------------------|--|
| 1. Pollutant      | 2. CAS No. (If Applicable) | 3. Uncontrolled Emissions<br>(TPY) | 4. Controlled Emissions (TPY) |  |
| PLE               | ASE REFER TO APPENDIX B F  | OR ADDITIONAL DETAILS              |                               |  |
| PM                | N/A                        | 533.6                              | 20.5                          |  |
| PM <sub>10</sub>  | N/A                        | 529.4                              | 16.3                          |  |
| PM <sub>2.5</sub> | N/A                        | 527.1                              | 13.9                          |  |
| SO <sub>2</sub>   | 7446-09-5                  | 101.1                              | 101.1                         |  |
| NO <sub>x</sub>   | N/A                        | 85.4                               | 85.4                          |  |
| CO                | 630-08-0                   | 52.4                               | 52.4                          |  |
| VOC               | N/A                        | 182.9                              | 182.9                         |  |
| Lead (Compounds)  | N/A                        | < 0.01                             | < 0.01                        |  |
| Single HAP        | 108-90-7                   | 35.8                               | 35.8                          |  |
| Total HAPs        | N/A                        | 88.9                               | 88.9                          |  |
|                   |                            |                                    |                               |  |
|                   |                            |                                    |                               |  |
|                   |                            |                                    |                               |  |
|                   |                            |                                    |                               |  |
|                   |                            |                                    |                               |  |
|                   |                            |                                    |                               |  |



#### Title V Permit Application Insignificant Activity Equipment- Form G Bureau of Air Quality

#### Please Refer to Instruction / Definitions Pages Before Completing This Form

| 1.<br>Insignificant<br>Activity(IA)<br>Unit ID: | 2. Insignificant Activity Unit ID Description                    | 3. Construction Permit ID or Approval Date (if applicable): | 4.<br>On SC<br>Insignificant<br>Activity List<br>(Yes or No) | 5.<br>Pollutant(s)       | 6.<br>Emission Rate<br>(Uncontrolled) | 7.<br>Deminimis Rate |
|-------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|--------------------------|---------------------------------------|----------------------|
| FCWS                                            | Filter Wash Station                                              | UNIT ALRE                                                   | ADY EXISTS                                                   | AS AN INSIGNIFICANT ACTI | ↓<br>VITY: SEE CURRI                  | NT PERMIT            |
| TEG1                                            | Triethylene Glycol (TEG) Wash Tank - West                        | UNIT ALRE                                                   | ADY EXISTS                                                   | AS AN INSIGNIFICANT ACTI | VITY: SEE CURRI                       | ENT PERMIT           |
| TEG2                                            | TEG Wash Tank – East                                             |                                                             |                                                              | AS AN INSIGNIFICANT ACTI |                                       |                      |
| VTEG                                            | Vigin TEG Tank                                                   |                                                             |                                                              | AS AN INSIGNIFICANT ACTI |                                       |                      |
| RTEG                                            | Recovered TEG Tank                                               |                                                             |                                                              | AS AN INSIGNIFICANT ACTI |                                       |                      |
| DT01                                            | 275 Gallon Diesel Tank                                           |                                                             |                                                              | AS AN INSIGNIFICANT ACTI |                                       |                      |
| GEN1                                            | Cumming Power Main Building<br>Backup Generator (Propane Fueled) |                                                             |                                                              | AS AN INSIGNIFICANT ACTI |                                       |                      |
| GEN2                                            | Cummins Power Fire Pump Generator (Diesel Fueled)                | UNIT ALRE.                                                  | ADY EXISTS A                                                 | AS AN INSIGNIFICANT ACTI | VITY; SEE CURRI                       | ENT PERMIT           |
| G1G2MT                                          | G1 & G2 Line Shared Mix Tanks                                    | Unknown                                                     | No                                                           | VOCs, HAPs               | < 5 tpy                               |                      |
|                                                 |                                                                  |                                                             |                                                              |                          |                                       |                      |



#### Title V Permit Application Stack/Vent Information – Form H Bureau of Air Quality

| Stack/Vent Information |                              |                      |                      |                                       |                                         |                                          |                                                 |                                                    |  |  |
|------------------------|------------------------------|----------------------|----------------------|---------------------------------------|-----------------------------------------|------------------------------------------|-------------------------------------------------|----------------------------------------------------|--|--|
| 1. Exhaust<br>Point ID | 2. Emission/<br>Equipment ID | 3. Pollutant         | 4. CAS No.           | 5. Date last modeled                  | 6. Modeled<br>Emission Rates<br>(lb/hr) | 7. Stack Gas<br>Exit Temp<br>(degrees F) | 8. Stack Gas<br>Exhaust<br>Velocity<br>(ft/sec) | 9. Non-Vertical<br>Discharge (H)<br>or Raincap (R) |  |  |
| 001E002                | G1TN                         | VOC, HAP             | N/A                  | See Ap                                | pendix F                                | 266.0                                    | 23.27                                           | U                                                  |  |  |
| 001E043                | OLS                          | Equipment Removed    |                      | See Ap                                | pendix F                                |                                          |                                                 |                                                    |  |  |
| 001E057                | G1XT                         | VOC                  | Multiple             | See Ap                                | pendix F                                | Ambient                                  | 23.27                                           | D                                                  |  |  |
| 001E092                | RB                           | Equipment Removed    |                      |                                       | pendix F                                |                                          |                                                 |                                                    |  |  |
| 001E096                | EGT                          | VOC, HAP             | Multiple             |                                       | pendix F                                | NOT LISTED                               | NOT LISTED                                      | NOT LISTED                                         |  |  |
| 001E097                | PP2SJ                        | VOC, HAP             | Multiple             | <u>-</u>                              | pendix F                                | 195.0                                    |                                                 | H (East)                                           |  |  |
| 001E098                | PC3SJ                        | VOC, HAP             | Multiple             |                                       | pendix F                                | 210.0                                    | 45.92                                           |                                                    |  |  |
| 001E099                | PC4SJ                        | VOC, HAP             | Multiple             |                                       | pendix F                                | 210.0                                    |                                                 | H (East)                                           |  |  |
| 001E101                | PP1SJ                        | VOC, HAP             | Multiple             |                                       | pendix F                                | 198.0                                    |                                                 | H (East)                                           |  |  |
| 001E102                | PC1SJ                        | VOC, HAP             | Multiple             |                                       | pendix F                                | 195.0                                    | 45.92                                           |                                                    |  |  |
| 001E103                | PC2SJ                        | VOC, HAP             | Multiple             |                                       | pendix F                                | 195.0                                    |                                                 | H (East)                                           |  |  |
| 001E112                | Train 1 & 2                  | VOC, HAP             | Multiple             |                                       | pendix F                                | 99.0                                     |                                                 | Down                                               |  |  |
| 003E001                | SB1                          | Combution byproducts | Multiple             |                                       | pendix F                                | 550.0                                    | 25.30                                           |                                                    |  |  |
| 003E002                | SB2                          | Combution byproducts | Multiple             |                                       | pendix F                                | 550.0                                    | 10.18                                           |                                                    |  |  |
| 003E003                | BORN                         | Combution byproducts | Multiple             |                                       | pendix F                                | 700.0                                    | 8.13                                            |                                                    |  |  |
| 003E004                | CARO                         | Combution byproducts | Multiple             |                                       | pendix F                                | 635.0                                    | 12.65                                           |                                                    |  |  |
| '007E001               | G2GC                         | VOC                  | N/A                  |                                       | pendix F                                | 135.0                                    |                                                 | Down                                               |  |  |
| 007E002                |                              | VOC                  | N/A                  |                                       | pendix F                                | 135.0                                    |                                                 | Down                                               |  |  |
| '007E003               | G2PC                         | VOC                  | N/A                  |                                       | pendix F                                | 138.0                                    |                                                 | Down                                               |  |  |
| 007E004                |                              | VOC                  | N/A                  |                                       | pendix F                                | 132.0                                    |                                                 | Down                                               |  |  |
| 007E005                | G1GR                         | PM                   | N/A                  |                                       | pendix F                                | 98.0                                     |                                                 | Down                                               |  |  |
| 007E006                | G2ET                         | PM                   | N/A                  |                                       | pendix F                                | Ambient                                  |                                                 | Down                                               |  |  |
| 007E007                | G2GR                         | PM                   | N/A                  | · · · · · · · · · · · · · · · · · · · | pendix F                                | 70                                       |                                                 | Down                                               |  |  |
| 007E008                | G2DT                         | PM                   | N/A                  |                                       | pendix F                                | 100                                      |                                                 | H (South)                                          |  |  |
| 007E073                | G2XT                         | VOC                  | N/A                  |                                       | pendix F                                | 70                                       |                                                 | H (East)                                           |  |  |
| 008E001                | G2C                          | None - Heat Only     |                      |                                       | pendix F                                | 288                                      |                                                 | Down                                               |  |  |
| 009E014                | FSILO                        | PM                   | N/A                  |                                       | pendix F                                | Ambient                                  | 130.23                                          |                                                    |  |  |
| 009E015                | BTLU                         | PM 0005010           | N/A                  |                                       | pendix F                                | Ambient                                  | 79.60                                           |                                                    |  |  |
| 026E005                | G3GC1                        | None - See 026E010   |                      |                                       | pendix F                                | 70                                       | 33.29                                           |                                                    |  |  |
| 026E006                | BH14<br>BH15                 | PM<br>PM             | N/A<br>N/A           |                                       | pendix F                                | 70                                       | 70.70                                           |                                                    |  |  |
| 026E007<br>026E010     | ВПІЗ                         | VOC, HAP             | Multiple             |                                       | pendix F<br>pendix F                    | 70<br>250                                | 59.70<br>33.78                                  |                                                    |  |  |
| 026E010                | -                            | VOC, HAP             | Multiple             |                                       | pendix F                                | 250                                      | 33.78                                           |                                                    |  |  |
| 026E011                |                              | VOC, HAP             |                      |                                       | pendix F                                | 400                                      | 35.78<br>35.10                                  |                                                    |  |  |
| 026E012                | G3C                          | VOC, HAP             | Multiple<br>Multiple |                                       | pendix F                                | 450                                      | 33.70                                           |                                                    |  |  |
| 026E014                | 030                          | VOC, HAP             | Multiple             |                                       | pendix F                                | 400                                      | 35.70<br>35.10                                  |                                                    |  |  |
| 026E015                | 1                            | VOC, HAP             | Multiple             |                                       | pendix F                                | 250                                      | 33.80                                           |                                                    |  |  |
| 026E016                | -                            | VOC. HAP             | Multiple             |                                       | pendix F                                | 140                                      | 33.80                                           |                                                    |  |  |
| 026E019                | G3GC2                        | N/A - Not Installed  | wumpie               |                                       | pendix F                                |                                          | 33.20                                           | 0                                                  |  |  |
| '026E021               |                              | PM                   | N/A                  |                                       | pendix F                                | 120                                      | 33.50                                           | 11                                                 |  |  |
| 026E023                | G3CW                         | PM                   | N/A                  |                                       | pendix F                                | 80                                       | 35.80                                           |                                                    |  |  |
| 026E027                |                              | VOC, HAP             | Multiple             |                                       | pendix F                                | 450                                      | 33.78                                           |                                                    |  |  |
| 026E028                | G3C                          | VOC, HAP             | Multiple             |                                       | pendix F                                | 400                                      | 33.78                                           |                                                    |  |  |
| 026E0030               | G3 Mix Rm.                   | VOC, HAP             | Multiple             |                                       | pendix F                                | N/A                                      | N/A                                             |                                                    |  |  |
| 888E001                | VSILO                        | PM                   | N/A                  |                                       | pendix F                                | Ambient                                  |                                                 | Down                                               |  |  |
| 888E002                | BH3                          | PM                   | N/A                  |                                       | pendix F                                | Ambient                                  | 68.70                                           |                                                    |  |  |
| 888E003                | EJT1                         | VOC, HAP             | Multiple             |                                       | pendix F                                | 85                                       | 16.67                                           |                                                    |  |  |
| 888E004                | EJT2                         | Equipment Removed    |                      |                                       | pendix F                                |                                          |                                                 |                                                    |  |  |
| 888E005                | MEOH                         | VOC, HAP             | Multiple             |                                       | pendix F                                | Ambient                                  | 0.00                                            | Н                                                  |  |  |
| 888E006                | VEGT                         | VOC, HAP             | Multiple             |                                       | pendix F                                | Ambient                                  | 0.00                                            |                                                    |  |  |
| 888E007                | REGT                         | VOC, HAP             | Multiple             |                                       | pendix F                                | Ambient                                  | 0.00                                            |                                                    |  |  |
| 888E008                | FOT1                         | VOC                  | N/A                  |                                       | pendix F                                | Ambient                                  | 0.00                                            |                                                    |  |  |
| 888E009                | FOT2                         | VOC                  | N/A                  |                                       | pendix F                                | Ambient                                  | 0.00                                            |                                                    |  |  |
| 888E035                | ВН9                          | PM                   | N/A                  |                                       | pendix F                                | Ambient                                  | 22.00                                           |                                                    |  |  |
| 888E037                | BH10                         | PM                   | N/A                  |                                       | pendix F                                | Ambient                                  | 47.00                                           |                                                    |  |  |
| 888E038                | BH12                         | PM                   | N/A                  |                                       | pendix F                                | 80                                       | 48.94                                           | NOT LISTED                                         |  |  |
| 888E039                | BH13                         | РМ                   | N/A                  |                                       | pendix F                                | 72                                       | 30.00                                           | NOT LISTED                                         |  |  |

Document Date: 6/24/2010 2:02 PM



#### Title V Permit Application Stack/Vent Information – Form H Bureau of Air Quality

|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stac                                      | k/Vent Informat     | ion                     |                    |                     | 18 18 18 18 18 18 18 18 18 18 18 18 18 1 |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------|-------------------------|--------------------|---------------------|------------------------------------------|
| 1. Exhaust component of Point ID Stack Exhaust Velocity (ft/sec) | M East* 12. UTM North*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13. Distance to<br>Plant Boundary<br>(ft) |                     | of Plume Obstru<br>(ft) |                    | 15. Stack<br>Height | 16. Stack<br>Diameter                    |
|                                                                  | To the state of th |                                           | Height              | Length                  | Width              | (ft)                | (ft)                                     |
|                                                                  | 414.48 3,845,937.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 584                                     | 96.3                | 65.6                    | 65.6               | 51.10               | 1.42                                     |
| 001E043<br>001E057 0.00 375.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                     |                         |                    |                     |                                          |
| 001E057 0.00 375,<br>001E092                                     | 393.00 3,846,020.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 96.3                | 59.1                    | 59.1               | 66.32               | 30.12                                    |
|                                                                  | LISTED NOT LISTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NOT LISTED                                | NOT LISTED          | NOT LISTED              | NOT LISTED         | NOT LISTED          | NOTHETER                                 |
|                                                                  | 437.54 3,845,860.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 104.0               | 68.9                    | 68.9               |                     | NOT LISTED                               |
|                                                                  | 434.69 3,845,861.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 104.0               | 68.9                    | 68.9               |                     | 0.23                                     |
|                                                                  | 435.99 3,845,864.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 104.0               | 68.9                    | 68.9               |                     | 0.17                                     |
|                                                                  | 434.75 3,845,870.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 104.0               | 68.9                    | 68.9               |                     | 0.25                                     |
|                                                                  | 432.15 3,845,873.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 104.0               | 68.9                    | 68.9               |                     | 0.17                                     |
|                                                                  | 434.44 3,845,875.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | 104.0               | 68.9                    | 68.9               |                     | 0.25                                     |
|                                                                  | 424.27 3,845,865.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7 568                                     | 104.0               | 68.9                    | 68.9               | 104.83              | 0.67                                     |
|                                                                  | 412.17 3,845,814.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 96.3                | 65.6                    | 65.6               | 41.00               | 3.00                                     |
|                                                                  | 413.51 3,845,808.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 96.3                | 65.6                    | 65.6               | 50.00               | 4.00                                     |
|                                                                  | 416.23 3,845,831.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 96.3                | 65.6                    | 65.6               |                     | 3.00                                     |
|                                                                  | 417.63 3,845,825.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | 96.3                | 65.6                    | 65.6               | 55.00               | 3.00                                     |
|                                                                  | 383.16 3,845,976.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 104.0               | 55.8                    | 55.8               | 69.21               | 1.58x2.17                                |
|                                                                  | 381.36 3,845,976.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | 104.0               | 55.8                    | 55.8               | 69.21               | 1.58x2.17                                |
|                                                                  | 395.96 3,845,913.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | 104.0               | 68.9                    | 68.9               | 64.13               | 0.83x1.17                                |
|                                                                  | 392.84 3,845,912.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | 104.0               | 68.9                    | 68.9               | 64.13               | 0.83x1.17                                |
|                                                                  | 394.03 3,845,983.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | 96.3                | 59.1                    | 59.1               | 14.00               | 1.33                                     |
|                                                                  | 391.19 3,845,981.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | 96.3                | 59.1                    | 59.1               | 19.06               | 0.33                                     |
|                                                                  | 363.53 3,845,985.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | 96.3                | 65.6                    | 65.6               | 3.58                | 1.42x2.00                                |
|                                                                  | 392.89 3,845,890.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | 104.0               | 68.9                    | 68.9               | 14.38               | 0.92x1.17                                |
|                                                                  | 394.26 3,845,893.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | 104.0               | 68.9                    | 68.9               | 59.96               | 1.75                                     |
|                                                                  | 375.59 3,846,011.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | 96.3                | 55.8                    | 55.8               | 71.50               | 2.67x2.00                                |
|                                                                  | 335.53 3,845,880.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | 104.0               | 65.6                    | 65.6               | 8.75                | 1.00                                     |
|                                                                  | 314.40 3,845,856.00<br>309.90 3.846,008.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           | 50.0                | 600.0                   | 150.0              | 15.00               | 2.00                                     |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | 50.0                | 600.0                   | 150.0              | 56.00               | 1.78                                     |
|                                                                  | 295.60 3,845,944.00<br>294.50 3,845,935.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           | 50.0<br>50.0        | 600.0                   | 150.0              | 12.33               | 2.26                                     |
|                                                                  | 292.90 3,846,016.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | 50.0                | 600.0<br>600.0          | 150.0              | 15.00               | 2.26                                     |
|                                                                  | 297.90 3,846,023.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | 50.0                | 600.0                   | 150.0<br>150.0     | 56.00<br>56.00      | 1.33                                     |
|                                                                  | 296.70 3,846,029.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | 50.0                | 600.0                   | 150.0              | 56.00               | 1.33<br>2.00                             |
|                                                                  | 295.57 3,846,035.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | 50.0                | 600.0                   | 150.0              | 56.00               | 1.33                                     |
|                                                                  | 294.30 3,846,041.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | 50.0                | 600.0                   | 150.0              | 56.00               | 2.00                                     |
|                                                                  | 293.10 3,846,047.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | 50.0                | 600.0                   | 150.0              | 56.00               | 2.33                                     |
| 026E016 33.20 375,2                                              | 292.00 3,846,053.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | 50.0                | 600.0                   | 150.0              | 56.00               | 3.00                                     |
| 026E019                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                     |                         |                    |                     |                                          |
|                                                                  | 319.32 3,845,976.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 361                                       | 50.0                | 600.0                   | 150.0              | 69.21               | 3.17                                     |
|                                                                  | 318.50 3,845,980.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | 50.0                | 600.0                   | 150.0              | 69.21               | 1.17x1.17                                |
|                                                                  | 301.30 3,845,999.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | 50.0                | 600.0                   | 150.0              | 56.00               | 2.00                                     |
|                                                                  | 300.00 3,846,004.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | 50.0                | 600.0                   | 150.0              | 56.00               | 1.33                                     |
| 026E0030 N/A                                                     | N/A N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           | N/A                 | N/A                     | N/A                | N/A                 | 1.67x1.50                                |
|                                                                  | 377.88 3,845,858.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | 104.0               | 62.3                    | 62.3               | 3.58                | 0.75x0.46                                |
|                                                                  | 379.98 3,845,854.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | 104.0               | 62.3                    | 62.3               | 3.92                | 0.83x0.83                                |
|                                                                  | 363.83 3845820.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 345                                       | 104.0               | 62.3                    | 62.3               | 12.50               | 8.33                                     |
| 888E004<br>888E005 0.00 375.3                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                     |                         |                    |                     |                                          |
|                                                                  | 384.24 3,845,713.54<br>357.48 3,845,758.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           | 96.3                | 78.7                    | 78.7               | 18.20               | 0.92x0.15                                |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | 96.3                | 85.3                    | 85.3               | 17.58               | 0.33                                     |
|                                                                  | 348.23 3,845,756.54<br>347.07 3,845,736.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           | 96.3<br>96.3        | 91.9                    | 91.9               | 19.06               | 0.33                                     |
|                                                                  | 3,845,761.77<br>3,845,761.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           | 96.3                | 91.9<br>82.0            | 91.9               | 33.46               | 1.08                                     |
|                                                                  | 3,846,100.30<br>3,846,100.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           | 32.0                | 275.4                   | 82.0               | 29.25               | 1.08                                     |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                     |                         | 118.0              | 13.00               | 1.42                                     |
| 888E037   47.001 375.5                                           | 314 ZZE 3 845 903 TE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 2051                                    | 104.01              | ות כע                   | ות כס              | 45 001              | E 001                                    |
| 888E037 <b>47</b> .00 375,3<br>888E038 0.00 375,3                | 3,845,903.10<br>3,845,983.11<br>3,845,983.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           | 104.0<br>NOT LISTED | 82.0<br>NOT LISTED      | 82.0<br>NOT LISTED | 45.00<br>11.67      | 5.00<br>1.33                             |

Document Date: 6/24/2010 2:02 PM



### Title V Permit Application Regulatory Information – Form I Bureau of Air Quality

Please Refer to Instruction / Definitions Pages Before Completing This Form **EMISSION LIMITS AND STANDARDS** (This section summarizes the emission unit emission limits and standards) 1. Emission 6. Applicable Regulation **Equipment ID** 3. Pollutant/Standard 4. Limit 5. Reference Method Unit (Regulation Citation/Condition) SEE APPENDIX G OR EXISTING TITLE V PERMIT – ALL CONDITIONS THEREIN INCORPORATED BY REFERENCE COMPLIANCE AND PERMIT REQUIREMENTS (This section summarizes the emission unit compliance requirements) 6. Applicable Regulation Equipment 7. In Compliance 8. Compliance 10. First 9. Compliance Date (Regulation Citation/Condition) (Y/N) Statement\* Submittal NOT APPLICABLE- COMPLIANCE WITH EACH CURRENTLY APPLICABLE REQUIREMENT IS CERTIFIED ANNUALLY. \*By initialing here, the Responsible Official certifies that this emission unit is in compliance with current applicable requirements and that during the permit term the source will continue to comply with such requirements. Further, for applicable requirements that will become effective during the permit term, that the source will meet such requirements on a timely basis, unless a more detailed schedule is expressly required by the applicable requirement. MONITORING/APPLICABLE REGULATION AND PERMIT/RULE REQUIREMENTS-PART I (This section summarizes the monitoring and reporting requirements. Parts I, II, III, and IV must be completed for each emission unit). 14. Reporting 13. Monitoring 11. Pollutant/Parameter 2. Unit ID 4. Limit 12. Required Monitoring Frequency Frequency SEE APPENDIX G OR EXISTING TITLE V PERMIT - ALL CONDITIONS THEREIN INCORPORATED BY REFERENCE MONITORING/APPLICABLE REGULATION AND PERMIT/RULE REQUIREMENTS-PART II (This section summarizes the monitoring and reporting requirements) 3. or 11. 17.Stack Test 15. Recordkeeping 16. Averaging 2. Unit ID **Equipment ID** Pollutant, Standard 4. Limit Frequency Time Y/N Frequency or Parameter

NOT APPLICABLE - NO TESTING IS REQUIRED PER APPLICABLE REQUIREMENTS. ANY MACT COMPLIANCE DEMONSTRATION REQUIRING

PERFORMANCE TESTING WILL BE DONE IN ACCORDANCE WITH US EPA REFERENCE METHODS AND PROCEDURES.



# Title V Permit Application Regulatory Information – Form I Bureau of Air Quality

| (This section             | NONITOR summarizes the monitoring and reporting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | NBLE REGULATION AN not described in Parts I        |                |           | •                           |                          | onitoring a | nd Reporting is            | needed.)       |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------|----------------|-----------|-----------------------------|--------------------------|-------------|----------------------------|----------------|
| 2. Unit ID                | 11. Pollutant/Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 4. Limit                                           |                | 18. If    | no monitoring requir        | ed, why?                 |             | 9. List any moirements not |                |
| SEE APPEND                | IX G OR EXISTING TITLE V PER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MIT – ALL         | CONDITIONS THE                                     | REIN INC       | ORPOR     | RATED BY REFER              | RENCE                    | 1 .044      | n omorno                   |                |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                    |                |           |                             |                          |             |                            |                |
|                           | Monitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | BLE REGULATION AN on summarizes the moni           |                |           | quirements)                 | IV                       |             |                            |                |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21. Pote          | ntial Uncontrolled                                 |                |           | 23. Potential               | 24.                      | Subject to  | CAM Rule (40               | CFR 64)?       |
| 2. Unit ID                | 20. Description (include equip/process ID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ip/process ID)    |                                                    | 22. Co<br>Equi |           |                             |                          | No          | Exempt                     | 25. Reason     |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pollutan          |                                                    |                |           | Tons/Year                   |                          |             | ·                          | Exempt?        |
| NOT APPLICA<br>RENEWAL AF | ABLE – CAM APPLICABILITY HAP<br>PPLICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IS ALREAD         | Y BEEN DETERM                                      | INED FOR       | ALL U     | NITS AT THE FA              | CILITY D                 | URING T     | HE PREVIO                  | OUS TITLE V    |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                    |                |           |                             |                          |             |                            |                |
| NOTE* If yes, the appli   | cant must submit additional information in the fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | orm of a CAM plai | n as required under 40 CFR                         | 64             |           |                             |                          |             |                            |                |
|                           | (This section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | VIDE LIMITS FOR REG emission unit(s) covere        |                |           |                             | tion)                    |             |                            |                |
| 2. Unit ID                | 11. Pollutant/Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 4. Limit<br>(Facility-Wid                          |                |           | . Parameter to Monit        |                          | 27. Applic  | cable Regulati             | on Avoidance   |
| SEE APPEND                | IX G OR EXISTING TITLE V PER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MIT - ALL         | CONDITIONS THE                                     | REIN INC       | ORPOR.    | ATED BY REFER               | ENCE                     |             |                            |                |
|                           | and the second section of the section of th |                   |                                                    |                |           |                             |                          |             |                            |                |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Appition          | VAL INFORMATION FO                                 | R MACT SO      | OURCES-   | PART VI                     |                          |             |                            |                |
|                           | (This section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | ional information or req                           |                | sources   | subject to a MACT Sta       |                          |             |                            |                |
| 2. Unit ID                | 28. New or Existing Equipm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ent               | 29. Control Eq                                     | uip ID         | 30        | ). List any unit/equip<br>s | ment which<br>tandards a |             |                            | from MACT      |
| SEE APPEND                | IX G OR EXISTING TITLE V PER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MIT - ALL         | CONDITIONS THE                                     | REIN INC       | ORPOR     | RATED BY REFER              | RENCE                    |             |                            |                |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                    |                |           |                             |                          |             |                            |                |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Annition          | IAL INFORMATION FOR                                | MACT SC        | URCES-    | PART VII                    |                          |             |                            |                |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ection allows f   | or additional requiremer                           | nts for source | s subject | to a MACT Standard)         |                          |             |                            |                |
| 2. Unit ID                | 31. List Other MACT Requirements shutdowr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | kamples, such as, main<br>ction (SSM) Plan, leak ( |                |           |                             |                          |             |                            | olan, startup, |
| SEE APPEND                | IX G OR EXISTING TITLE V PER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                                    |                |           |                             |                          | ,           |                            |                |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                    |                |           |                             |                          |             |                            |                |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                    |                |           |                             |                          |             |                            |                |



# Title V Permit Application Streamlining Applicable Requirements- Form J Bureau of Air Quality

#### Please Refer to Instruction / Definitions Pages Before Completing This Form

|                      | STREAMLIN                        | ING APPLICABLE REQUIREM  |                         |                                    |  |  |  |  |  |  |  |  |  |  |  |
|----------------------|----------------------------------|--------------------------|-------------------------|------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| 1. Emission Unit ID: | 2. Requirement to be streamlined | 3. Citation or Permit ID | 4. Reason to streamline | 5. Suggested replacement or hybrid |  |  |  |  |  |  |  |  |  |  |  |
| SEE ATTACHE          | D PERMIT MARKUP FOR PROF         | POSED PERMIT CONDIT      | <br> TION STREAML <br>  | INING AND/OR REMOVAL               |  |  |  |  |  |  |  |  |  |  |  |
|                      |                                  |                          |                         |                                    |  |  |  |  |  |  |  |  |  |  |  |
|                      |                                  |                          |                         |                                    |  |  |  |  |  |  |  |  |  |  |  |
|                      |                                  |                          |                         |                                    |  |  |  |  |  |  |  |  |  |  |  |
|                      |                                  |                          |                         |                                    |  |  |  |  |  |  |  |  |  |  |  |
|                      |                                  |                          |                         |                                    |  |  |  |  |  |  |  |  |  |  |  |
|                      |                                  |                          |                         |                                    |  |  |  |  |  |  |  |  |  |  |  |



### Title V Permit Application Permit Shield – Form K Bureau of Air Quality

# Please Refer to Instruction / Definitions Pages Before Completing This Form

|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PERMIT SHIEL           | )                               |                                               |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------|-----------------------------------------------|
| 1.Citation   | 2. Regulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3. Applicable<br>(Y/N) | 4. Standard<br>Reason Indicator | 5. Comments (Use when choosing Indicator "J") |
| 3M REQL      | JESTS A PERMIT SHIELD INCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RPORATING              | THE EXISTING I                  | DEDMIT BY DEEEDENCE                           |
|              | The state of the s | THE OTTAL TIME         | THE EXISTING                    | LINIII, DI REFERENCE                          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                 |                                               |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                 |                                               |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                 |                                               |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                 |                                               |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                 |                                               |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                 |                                               |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                 |                                               |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                 |                                               |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                 |                                               |
| - <u>- L</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                 |                                               |

|           | STANDARD REASONS                                                                                             |  |  |  |  |  |  |  |  |
|-----------|--------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Indicator | Standard Reason                                                                                              |  |  |  |  |  |  |  |  |
| Α         | The facility is not in the applicable source category                                                        |  |  |  |  |  |  |  |  |
| В         | The specified source/process is not present at the facility                                                  |  |  |  |  |  |  |  |  |
| С         | The facility/unit was constructed or last modified prior to the effective date of the rule                   |  |  |  |  |  |  |  |  |
| D         | Applies to all facilities                                                                                    |  |  |  |  |  |  |  |  |
| Е         | Rule/Standard proposed, but not final/effective                                                              |  |  |  |  |  |  |  |  |
| F         | The facility/unit emits pollutants at a level less than established by the rule                              |  |  |  |  |  |  |  |  |
| G         | The facility/unit design capacity or production capacity is less than established by the rule.               |  |  |  |  |  |  |  |  |
| Н         | The facility is not in a special control/non-attainment area.                                                |  |  |  |  |  |  |  |  |
|           | Applicable to facility; requirements are listed in permit application and facility has certified compliance. |  |  |  |  |  |  |  |  |
| J         | Other (explain)                                                                                              |  |  |  |  |  |  |  |  |

# **Attachment B**

Total Facility Potential-to-Emit Calculations

# **Emissions Summary**

Total Facility Controlled & Limited Potential-to-Emit

|                           |           |           |     | -   | Em  | issions ( | tons/yr), | by Emis | sion Unit | ID Num | ber   |       |       | * .   |      |                                |
|---------------------------|-----------|-----------|-----|-----|-----|-----------|-----------|---------|-----------|--------|-------|-------|-------|-------|------|--------------------------------|
| Pollutant                 | 01<br>01A | 02<br>02A | 03  | 04  | 05  | 06        | 07        | 08      | 09        | 10     | 11    | 12    | 13    | 14    | 15   | Facility<br>Total<br>(tons/yr) |
| PM                        |           |           |     |     | 0.1 | 0.1       | 0.1       | <0.01   | 0.7       | 0.1    | 6.0   | 4.3   | 1.9   | 1.8   | 5.5  | 20.5                           |
| PM <sub>10</sub>          |           |           |     |     | 0.1 | 0.1       | 0.1       | <0.01   | 0.7       | 0.1    | 4.2   | 3.0   |       | 1.3   | 5.5  | 16.3                           |
| PM <sub>2.5</sub>         |           |           |     |     | 0.1 | 0.1       | 0.1       | <0.01   | 0.7       | 0.1    | 3.2   | 2.3   |       | 1.0   |      | 13.9                           |
| SO <sub>2</sub>           |           |           |     |     |     |           |           |         |           |        | 12.9  | 9.2   | 40.0  | 39.1  |      |                                |
| NO <sub>x</sub>           |           |           |     |     |     |           |           |         |           |        | 36.2  | 25.9  |       | 12.0  |      | 101.1                          |
| CO                        |           |           |     |     |     |           |           |         |           |        |       |       |       |       |      | 85.4                           |
| VOC                       | 2.8       | 0.1       | 3.5 | 5.1 | 0.2 | 40.0      | 81.6      |         |           |        | 20.9  | 14.9  |       | 10.1  |      | 52.4                           |
| _ead                      |           |           |     |     | 0.2 | 40.0      | 01.0      |         |           |        | 1.4   | 1.0   | 0.4   | 0.7   | 46.3 | 182.9                          |
|                           |           |           |     |     |     |           |           |         |           |        | <0.01 | <0.01 | <0.01 | <0.01 |      | < 0.01                         |
| Single HAP <sup>(1)</sup> |           |           |     |     |     |           |           |         |           |        |       |       |       |       | 35.8 |                                |
| Total HAPs                | 2.6       | 0.1       | 3.3 | 4.8 |     | 9.5       | 18.9      |         |           |        | 0.5   | 0.3   | 0.1   | 0.2   | 48.4 | 88.9                           |

<sup>(1)</sup> Total facility maximum single hap is chlorobenzene; souces that do not emit this HAP are not included.

Total Facility Uncontrolled & Limited Potential-to-Emit

|                           |           |           |     |     | Em   | issions ( | tons/yr), | by Emiss | sion Unit | ID Num | ber   | ***   |       | <del></del> |              | Facility           |
|---------------------------|-----------|-----------|-----|-----|------|-----------|-----------|----------|-----------|--------|-------|-------|-------|-------------|--------------|--------------------|
| Pollutant                 | 01<br>01A | 02<br>02A | 03  | 04  | 05   | 06        | 07        | 08       | 09        | 10     | 11    | 12    | 13    | 14          | 15           | Total<br>(tons/yr) |
| PM                        |           |           |     |     | 80.2 | 92.3      | 89.6      | 9.3      | 169.4     | 60.4   | 6.0   | 4.3   | 1.9   | 1.8         | 18.5         |                    |
| PM <sub>10</sub>          |           |           |     |     | 80.2 | 92.3      | 89.6      | 9.3      | 169.4     | 60.4   | 4.2   | 3.0   |       | 1.3         |              |                    |
| PM <sub>2,5</sub>         |           |           |     |     | 80.2 | 92.3      | 89.6      | 9.3      | 169.4     | 60.4   | 3.2   | 2.3   |       |             | 18.5         |                    |
| SO <sub>2</sub>           |           |           |     |     |      |           |           |          |           |        | 12.9  | 9.2   | 40.0  |             | 10.5         | 101.1              |
| NO <sub>x</sub>           |           |           |     |     |      |           |           |          |           |        | 36.2  | 25.9  | 11.3  | 12.0        |              | 85.4               |
| CO                        |           |           |     |     |      |           |           |          |           |        | 20.9  | 14.9  | 6.5   | 10.1        |              | 52.4               |
| VOC                       | 2.8       | 0.1       | 3.5 | 5.1 | 0.2  | 40.0      | 81.6      |          |           |        | 1.4   | 1.0   |       | 0.7         | 46.3         |                    |
| Lead                      |           |           |     |     |      |           |           |          |           |        | <0.01 | <0.01 | <0.01 | <0.01       |              |                    |
| Single HAP <sup>(1)</sup> |           |           |     |     |      |           |           |          |           |        |       |       |       |             | 25.0         | <0.01              |
| Total HAPs                | 2.6       | 0.1       | 3.3 | 4.8 |      | 9.5       | 18.9      |          |           |        | 0.5   | 0.3   | 0.1   | 0.2         | 35.8<br>48.4 | 35.8<br>88.9       |

<sup>(1)</sup> Total facility maximum single hap is chlorobenzene; souces that do not emit this HAP are not included.

#### Emission Unit 01 & 01A - Train 1 & Train 1 Steam Vents

#### Discussion

- 1. "Train 1" and "Train 2" operate as separate batch processes, each with a maximum batch size of [CONFIDENTIAL]. The shortest batch duration [CONFIDENTIAL]. Train 1 & Train 2 emissions are calculated as a combined total because both Train 1 & Train 2 vent out of the same stack (Exhaust 001E112).
- 2. Using the specified batch time, the maximum capacity for Train 1 & Train 2 (combined) is [CONFIDENTIAL]. The Train 1 Steam Vents are specific to Train 1, and therefore use the capacity [CONFIDENTIAL].
- 3. VOC emission factor(s) for Train 1 / Train 2, and for Train 1 Steam Vents, is/are the sum of the appropriate "Streams" from AP-42 Chapter 6.6.2 "Poly(ethylene Terephthalate)", Table 6.6.2-1 (01/95). Refer to the footnotes to the emission calculations for detain on the selected "stream" factors. One gram per kilogram (g/kg) is equivalent to one pound per thousand pounds (lb/1000lb).
- 4. HAP (and air toxic) emission factors for Train 1 / Train 2 are derived speciated based on the worst-case percent VOC composition and the listed VOC emission factor. The worst-case percent VOC composition is derived based on the January 16 & 19, 2007 "Comprehensive Emissions Test Report" for the PET Reactor Processes at 3M Decatur Film.

Emission Unit Potential-to-Emit Summary (tons/yr)

|                   |                   | 01                           |      |        | 01A  | Emission                  |
|-------------------|-------------------|------------------------------|------|--------|------|---------------------------|
| Pollutants        | PP1<br>PC1<br>PC2 | EGR1<br>MER1<br>ICR1<br>RGDT | EGT  | EGT RB |      | Unit 01<br>& 01A<br>Total |
| PM                |                   |                              |      | N/A    |      |                           |
| PM <sub>10</sub>  |                   |                              |      | N/A    |      |                           |
| PM <sub>2.5</sub> |                   |                              |      | N/A    |      |                           |
| SO <sub>2</sub>   |                   |                              |      | N/A    |      |                           |
| NO <sub>x</sub>   |                   |                              |      | N/A    |      |                           |
| CO                |                   |                              |      | N/A    |      |                           |
| VOC               |                   | 2.64                         | 0.02 | N/A    | 0.09 | 2.75                      |
| Lead              |                   |                              |      | N/A    |      |                           |
| Single HAP        |                   |                              |      | N/A    |      |                           |
| Total HAPs        |                   | 2.52                         | 0.02 | N/A    | 0.09 | 2.62                      |

<sup>(1)</sup> Total facility maximum single hap is chlorobenzene; souces that do not emit this HAP are not included.

### Emission Unit 01 & 01A - Train 1 & Train 1 Steam Vents

#### Train 1 Equipment (Exhaust 001E112)

(PP1 - Prepolymer #1; PC1 - Polycon #1; PC2 - Polycon #2; EGR1 - Train 1 REG Receiver; MER1 - Train 1 MeOH Receiver;

ICR1 - Train 1 Intermediate Cut Receiver; RGDT - Byproduct EG Day Tank)

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(lb/1000 lb) | Max.<br>Capacity <sup>(2)</sup><br>(lb/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency<br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|---------------------------------------------------|--------------------------------------------|------------------------------|------------------------------|--------------------------------------------|---------------------------------------------|
| PM                |                                                   |                                            |                              |                              |                                            |                                             |
| PM <sub>10</sub>  |                                                   |                                            |                              |                              |                                            |                                             |
| PM <sub>2.5</sub> |                                                   |                                            |                              |                              |                                            |                                             |
| SO <sub>2</sub>   |                                                   |                                            |                              |                              |                                            |                                             |
| NO <sub>x</sub>   |                                                   |                                            |                              |                              |                                            |                                             |
| СО                |                                                   |                                            |                              |                              |                                            |                                             |
| VOC               |                                                   |                                            | 0.60                         |                              | 0.60                                       | 2.64                                        |
| Lead              |                                                   |                                            |                              |                              |                                            |                                             |
| Single HAP        |                                                   |                                            |                              |                              |                                            |                                             |
| Total HAPs        |                                                   |                                            | 0.57                         |                              | 0.57                                       | 2.52                                        |
| Acetaldehyde      |                                                   |                                            | 0.17                         |                              | 0.17                                       | 0.73                                        |
| Dimethyl ether    |                                                   |                                            | 2.61E-03                     |                              | 2.61E-03                                   | 0.01                                        |
| Dioxane, p-       |                                                   |                                            | 2.61E-03                     | ***                          | 2.61E-03                                   | 0.01                                        |
| Ethylene          |                                                   |                                            | 2.45E-03                     |                              | 2.45E-03                                   | 0.01                                        |
| Ethylene glycol   |                                                   |                                            | 0.01                         | ***                          | 0.01                                       | 0.05                                        |
| Ethylene oxide    |                                                   |                                            | 2.45E-03                     |                              | 2.45E-03                                   | 0.01                                        |
| Methanol          |                                                   |                                            | 0.39                         |                              | 0.39                                       | 1.71                                        |
| Methyl acetate    |                                                   |                                            | 1.63E-03                     |                              | 1.63E-03                                   | 7.14E-03                                    |

<sup>(1)</sup> Emission factors derived as discussed for this emission unit, using [CONFIDENTIAL]. Please refer to the April 2003 Title V Renewal application or the original Title V renewal application for details.

#### Equipment RB - Blending/Mixing (Exhaust 001E092)

(No emission calculations performed; equipment has been removed)

<sup>(2)</sup> Maximum capacity is derived as described in the discussion section for this Emission Unit. Please refer to the April 2003 Title V Renewal application or the original Title V renewal application for additional details.

<sup>\*</sup>HAP species include acetaldehyde, p-dioxane, ethylene glycol, ethylene oxide, and methanol.

#### Emission Unit 01 & 01A - Train 1 & Train 1 Steam Vents

#### Equipment EGT - Ethylene Glycol Day Tank (Exhaust 001E096)

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(lb/1000 lb) | Max.<br>Capacity <sup>(2)</sup><br>(lb/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency<br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|---------------------------------------------------|--------------------------------------------|------------------------------|------------------------------|--------------------------------------------|---------------------------------------------|
| PM                |                                                   |                                            |                              |                              |                                            |                                             |
| PM <sub>10</sub>  |                                                   |                                            |                              |                              |                                            |                                             |
| PM <sub>2.5</sub> |                                                   |                                            |                              |                              |                                            |                                             |
| SO <sub>2</sub>   |                                                   |                                            |                              |                              |                                            |                                             |
| NO <sub>x</sub>   |                                                   |                                            |                              |                              |                                            |                                             |
| CO                |                                                   |                                            |                              |                              |                                            |                                             |
| VOC               |                                                   |                                            | 3.60E-03                     |                              | 3.60E-03                                   | 0.02                                        |
| Lead              |                                                   |                                            |                              |                              |                                            |                                             |
| Single HAP        |                                                   |                                            |                              |                              |                                            |                                             |
| Total HAPs        |                                                   |                                            | 3.43E-03                     |                              | 3.43E-03                                   | 0.02                                        |
| Acetaldehyde      |                                                   |                                            | 9.92E-04                     |                              | 9.92E-04                                   | 4.34E-03                                    |
| Dimethyl ether    |                                                   |                                            | 1.56E-05                     |                              | 1.56E-05                                   | 6.81E-05                                    |
| Dioxane, p-       |                                                   |                                            | 1.56E-05                     |                              | 1.56E-05                                   | 6.81E-05                                    |
| Ethylene          |                                                   |                                            | 1.46E-05                     |                              | 1.46E-05                                   | 6.39E-05                                    |
| Ethylene glycol   |                                                   |                                            | 7.29E-05                     |                              | 7.29E-05                                   | 3.19E-04                                    |
| Ethyl oxide       |                                                   |                                            | 1.46E-05                     |                              | 1.46E-05                                   | 6.39E-05                                    |
| Methanol          |                                                   |                                            | 2.33E-03                     |                              | 2.33E-03                                   | 0.01                                        |
| Methyl acetate    |                                                   |                                            | 9.72E-06                     |                              | 9.72E-06                                   | 4.26E-05                                    |

<sup>(1)</sup> Emission factors derived as discussed for this emission unit, using [CONFIDENTIAL]. Please refer to the April 2003 Title V Renewal application or the original Title V renewal application for details.

Train 1 Steam Vents (Exhausts 001E101, 102, 103)

(PP1SJ - PP1 Steam Jet Vent; PC1SJ - PC1 Steam Jet Vent; PC2SJ - PC2 Steam Jet Vent)

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(lb/1000 lb) | Max.<br>Capacity <sup>(2)</sup><br>(lb/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency<br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|---------------------------------------------------|--------------------------------------------|------------------------------|------------------------------|--------------------------------------------|---------------------------------------------|
| PM                |                                                   |                                            |                              |                              |                                            |                                             |
| PM <sub>10</sub>  |                                                   |                                            |                              |                              |                                            |                                             |
| PM <sub>2.5</sub> |                                                   |                                            |                              |                              |                                            |                                             |
| SO <sub>2</sub>   |                                                   |                                            |                              |                              |                                            |                                             |
| NO <sub>x</sub>   |                                                   |                                            |                              |                              |                                            |                                             |
| CO                |                                                   |                                            |                              |                              |                                            |                                             |
| VOC               |                                                   |                                            | 0.02                         |                              | 0.02                                       | 0.09                                        |
| Lead              |                                                   |                                            |                              |                              |                                            |                                             |
| Single HAP        |                                                   |                                            |                              |                              |                                            |                                             |
| Total HAPs        |                                                   |                                            | 0.02                         |                              | 0.02                                       | 0.09                                        |
| Acetaldehyde      |                                                   |                                            | 5.79E-03                     |                              | 5.79E-03                                   | 0.03                                        |
| Dimethyl ether    |                                                   |                                            | 9.08E-05                     |                              | 9.08E-05                                   | 3.98E-04                                    |
| Dioxane, p-       |                                                   |                                            | 9.08E-05                     |                              | 9.08E-05                                   | 3.98E-04                                    |
| Ethylene          |                                                   |                                            | 8.51E-05                     |                              | 8.51E-05                                   | 3.73E-04                                    |
| Ethylene glycol   |                                                   |                                            | 4.25E-04                     |                              | 4.25E-04                                   | 1.86E-03                                    |
| Ethyl oxide       |                                                   |                                            | 8.51E-05                     |                              | 8.51E-05                                   | 3.73E-04                                    |
| Methanol          |                                                   |                                            | 0.01                         |                              | 0.01                                       | 0.06                                        |
| Methyl acetate    |                                                   |                                            | 5.67E-05                     |                              | 5.67E-05                                   | 2.48E-04                                    |

<sup>(1)</sup> Emission factors derived as discussed for this emission unit, using [CONFIDENTIAL]. Please refer to the April 2003 Title V Renewal application or the original Title V renewal application for details.

<sup>(2)</sup> Maximum capacity is derived as described in the discussion section for this Emission Unit. Please refer to the April 2003 Title V Renewal application or the original Title V renewal application for additional details.

<sup>\*</sup>HAP species include acetaldehyde, p-dioxane, ethylene glycol, and methanol.

<sup>(2)</sup> Maximum capacity is derived as described in the discussion section for this Emission Unit. Please refer to the April 2003 Title V Renewal application or the original Title V renewal application for additional details.

<sup>\*</sup>HAP species include acetaldehyde, p-dioxane, ethylene glycol, and methanol.

#### Emission Unit 02 & 02A - Train 2 & Train 2 Steam Vents

#### Discussion

- 1. "Train 1" and "Train 2" operate as separate batch processes, each with a maximum batch size of [CONFIDENTIAL]. The shortest batch duration [CONFIDENTIAL]. Train 1 & Train 2 emissions are calculated as a combined total because both Train 1 & Train 2 vent out of the same stack (Exhaust 001E112).
- 2. Using the specified batch time, the maximum capacity for Train 1 & Train 2 (combined) is [CONFIDENTIAL]. The Train 1 Steam Vents are specific to Train 1, and therefore use the capacity [CONFIDENTIAL].
- 3. VOC emission factor(s) for Train 1 / Train 2, and for Train 1 Steam Vents, is/are the sum of the appropriate "Streams" from AP-42 Chapter 6.6.2 "Poly(ethylene Terephthalate)", Table 6.6.2-1 (01/95). Refer to the footnotes to the emission calculations for detain on the selected "stream" factors. One gram per kilogram (g/kg) is equivalent to one pound per thousand pounds (lb/1000lb).
- 4. HAP (and air toxic) emission factors for Train 1 / Train 2 are derived speciated based on the worst-case percent VOC composition and the listed VOC emission factor. The worst-case percent VOC composition is derived based on the January 16 & 19, 2007 "Comprehensive Emissions Test Report" for the PET Reactor Processes at 3M Decatur Film.

Emission Unit Potential-to-Emit Summary (tons/vr)

|                   |                   | 02                           |          | 02A                     | Emission                  |
|-------------------|-------------------|------------------------------|----------|-------------------------|---------------------------|
| Pollutants        | PP1<br>PC1<br>PC2 | EGR1<br>MER1<br>ICR1<br>RGDT | EGT      | PP1SJ<br>PC1SJ<br>PC2SJ | Unit 02<br>& 02A<br>Total |
| PM                | Included with     | Train 1 calcu                | ulations |                         |                           |
| PM <sub>10</sub>  | Included with     | Train 1 calcu                | ulations |                         |                           |
| PM <sub>2.5</sub> | Included with     | Train 1 calcu                | ulations |                         |                           |
| SO <sub>2</sub>   | Included with     | Train 1 calcu                | ulations |                         |                           |
| NO <sub>x</sub>   | Included with     | Train 1 calcu                | ulations |                         |                           |
| CO                | Included with     | Train 1 calcu                | ulations |                         |                           |
| VOC               | Included with     | Train 1 calcu                | ulations | 0.09                    | 0.09                      |
| Lead              | Included with     | Train 1 calcu                | ulations |                         |                           |
| Single HAP        | Included with     | Train 1 calcu                | ulations |                         |                           |
| Total HAPs        | Included with     | Train 1 calcu                | ulations | 0.09                    | 0.09                      |

<sup>(1)</sup> Total facility maximum single hap is chlorobenzene; souces that do not emit this HAP are not included.

#### Train 2 Equipment (Exhaust 001E112)

(PP2 - Prepolymer #2; PC3 - Polycon #3; PC4 - Polycon #4; EGR2 - Train 2 REG Receiver; MER2 - Train 2 MeOH Receiver; ICR2 - Train 2 Intermediate Cut Receiver; RGDT - Byproduct EG Day Tank)
(Emissions for this equipment are calculated as part of Train 1)

#### Equipment EGT - Ethylene Glycol Day Tank (Exhaust 001E096)

(Emissions for this equipment are calculated as part of Train 1)

#### Emission Unit 02 & 02A - Train 2 & Train 2 Steam Vents

Train 2 Steam Vents (Exhausts 001E097, 098, 099)

(PP2SJ - PP1 Steam Jet Vent; PC3SJ - PC3 Steam Jet Vent; PC4SJ - PC4 Steam Jet Vent)

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(lb/1000 lb) | Max.<br>Capacity <sup>(2)</sup><br>(lb/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency<br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|---------------------------------------------------|--------------------------------------------|------------------------------|------------------------------|--------------------------------------------|---------------------------------------------|
| PM                |                                                   |                                            |                              |                              |                                            |                                             |
| PM <sub>10</sub>  |                                                   |                                            |                              |                              |                                            |                                             |
| PM <sub>2.5</sub> |                                                   |                                            |                              |                              |                                            |                                             |
| SO <sub>2</sub>   |                                                   |                                            |                              |                              |                                            |                                             |
| NO <sub>x</sub>   |                                                   |                                            |                              |                              |                                            |                                             |
| co                |                                                   |                                            |                              |                              |                                            |                                             |
| VOC               |                                                   |                                            | 0.02                         |                              | 0.02                                       | 0.09                                        |
| Lead              |                                                   |                                            |                              |                              |                                            |                                             |
| Single HAP        |                                                   |                                            |                              |                              |                                            |                                             |
| Total HAPs*       |                                                   |                                            | 0.02                         |                              | 0.02                                       | 0.09                                        |
| Acetaldehyde      |                                                   |                                            | 5.79E-03                     |                              | 5.79E-03                                   | 0.03                                        |
| Dimethyl ether    |                                                   |                                            | 9.08E-05                     |                              | 9.08E-05                                   | 3.98E-04                                    |
| Dioxane, p-       |                                                   |                                            | 9.08E-05                     |                              | 9.08E-05                                   | 3.98E-04                                    |
| Ethylene          |                                                   |                                            | 8.51E-05                     |                              | 8.51E-05                                   | 3.73E-04                                    |
| Ethylene glycol   |                                                   |                                            | 4.25E-04                     |                              | 4.25E-04                                   | 1.86E-03                                    |
| Ethyl oxide       |                                                   |                                            | 8.51E-05                     |                              | 8.51E-05                                   | 3.73E-04                                    |
| Methanol          |                                                   |                                            | 0.01                         |                              | 0.01                                       | 0.06                                        |
| Methyl acetate    |                                                   |                                            | 5.67E-05                     |                              | 5.67E-05                                   | 2.48E-04                                    |

<sup>(1)</sup> Emission factors derived as discussed for this emission unit, using stream "G" for "Ethylene Glycol Recovery Condenser" and stream "H" for "Ethylene Glycol Recovery Vacuum System." Please refer to the April 2003 Title V Renewal application or the original Title V renewal application for details.

<sup>(2)</sup> Maximum capacity is derived as described in the discussion section for this Emission Unit. Please refer to the April 2003 Title V Renewal application or the original Title V renewal application for additional details.

 $<sup>^{\</sup>star}\text{HAP}$  species include acetaldehyde, p-dioxane, ethylene glycol, and methanol.

#### **Emission Unit 03 - Vertical Ejector Towers**

#### Discussion

- 1. Emissions from the equipment included in this emission unit may be evaluated using the Train 1 & Train 2 maximum (combined) capacity.
- 2. "Train 1" and "Train 2" operate as separate batch processes, each with a maximum batch size of [CONFIDENTIAL]. The shortest batch duration for both Train 1 & Train 2 operating simultaneously is 3 hours; therefore, the maximum hourly capacity is [CONFIDENTIAL].
- 3. VOC emission factor(s) for this equipment is/are the sum of the appropriate "Streams" from AP-42 Chapter 6.6.2 "Poly(ethylene Terephthalate)", Table 6.6.2-1 (01/95). Refer to the footnotes to the emission calculations for detain on the selected "stream" factors. One gram per kilogram (g/kg) is equivalent to one pound per thousand pounds (lb/1000lb).
- 4. HAP (and air toxic) emission factors for Train 1 / Train 2 are derived speciated based on the worst-case percent VOC composition and the listed VOC emission factor. The worst-case percent VOC composition is derived based on the January 16 & 19, 2007 "Comprehensive Emissions Test Report" for the PET Reactor Processes at 3M Decatur Film.

Emission Unit Potential-to-Emit Summary (tons/yr)

| Pollutants        | EJT1 | EJT2    | Emission<br>Unit 03<br>Total |
|-------------------|------|---------|------------------------------|
| PM                |      | Removed |                              |
| PM <sub>10</sub>  |      | Removed |                              |
| PM <sub>2.5</sub> |      | Removed |                              |
| SO <sub>2</sub>   |      | Removed |                              |
| NO <sub>x</sub>   |      | Removed |                              |
| СО                |      | Removed |                              |
| VOC               | 3.50 | Removed | 3.50                         |
| Lead              |      | Removed |                              |
| Single HAP        |      | Removed |                              |
| Total HAPs        | 3.34 | Removed | 3.34                         |

<sup>(1)</sup> Total facility maximum single hap is chlorobenzene; souces that do not emit this HAP are not included.

### **Emission Unit 03 - Vertical Ejector Towers**

#### Equipment EJT1 - Resin Train Cooling Tower (Exhaust 888E003)

| Pollutant         | Emission Max. Factor <sup>(1)</sup> Capacity <sup>(2)</sup> (lb/1000 lb) (lb/hr) |  | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency<br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|----------------------------------------------------------------------------------|--|------------------------------|------------------------------|--------------------------------------------|---------------------------------------------|
| PM                |                                                                                  |  |                              |                              |                                            |                                             |
| PM <sub>10</sub>  |                                                                                  |  |                              |                              |                                            |                                             |
| PM <sub>2.5</sub> |                                                                                  |  |                              |                              |                                            |                                             |
| SO <sub>2</sub>   |                                                                                  |  |                              |                              |                                            |                                             |
| NO <sub>x</sub>   |                                                                                  |  |                              |                              |                                            |                                             |
| co                |                                                                                  |  |                              |                              |                                            |                                             |
| VOC               |                                                                                  |  | 0.80                         |                              | 0.80                                       | 3.50                                        |
| Lead              |                                                                                  |  |                              |                              |                                            |                                             |
| Single HAP        |                                                                                  |  |                              |                              |                                            |                                             |
| Total HAPs*       |                                                                                  |  | 0.76                         |                              | 0.76                                       | 3.34                                        |
| Acetaldehyde      |                                                                                  |  | 0.22                         |                              | 0.22                                       | 0.97                                        |
| Dimethyl ether    |                                                                                  |  | 3.46E-03                     |                              | 3.46E-03                                   | 0.02                                        |
| Dioxane, p-       |                                                                                  |  | 3.46E-03                     |                              | 3.46E-03                                   | 0.02                                        |
| Ethylene          |                                                                                  |  | 3.24E-03                     |                              | 3.24E-03                                   | 0.01                                        |
| Ethylene glycol   |                                                                                  |  | 0.02                         |                              | 0.02                                       | 0.07                                        |
| Ethyl oxide       |                                                                                  |  | 3.24E-03                     |                              | 3.24E-03                                   | 0.01                                        |
| Methanol          |                                                                                  |  | 0.52                         |                              | 0.52                                       | 2.27                                        |
| Methyl acetate    |                                                                                  |  | 2.16E-03                     |                              | 2.16E-03                                   | 9.47E-03                                    |

<sup>(1)</sup> Emission factors derived as discussed for this emission unit, using [CONFIDENTIAL]. Please refer to the April 2003 Title V Renewal application or the original Title V renewal application for details.

#### Equipment EJT2 - Vertical Ejector Tower 2 (Exhaust 888E004)

(No emission calculations performed; equipment has been removed)

<sup>(2)</sup> Maximum capacity is derived as described in the discussion section for this Emission Unit. Please refer to the April 2003 Title V Renewal application or the original Title V renewal application for additional details.

<sup>\*</sup>HAP species include acetaldehyde, p-dioxane, ethylene glycol, and methanol.

#### **Emission Unit 04 - Resin Tank Farm**

#### Discussion

- 1. Emissions from the equipment included in this emission unit may be evaluated using the Train 1 & Train 2 maximum (combined) capacity.
- 2. "Train 1" and "Train 2" operate as separate batch processes, each with a maximum batch size of [CONFIDENTIAL]. The shortest batch duration for both Train 1 & Train 2 operating simultaneously is 3 hours; therefore, the maximum hourly capacity is [CONFIDENTIAL].
- 3. VOC emission factor(s) for this equipment is/are the sum of the appropriate "Streams" from AP-42 Chapter 6.6.2 "Poly(ethylene Terephthalate)", Table 6.6.2-1 (01/95). Refer to the footnotes to the emission calculations for detain on the selected "stream" factors. One gram per kilogram (g/kg) is equivalent to one pound per thousand pounds (lb/1000lb).
- 4. HAP (and air toxic) emission factors for Train 1 / Train 2 are derived speciated based on the worst-case percent VOC composition and the listed VOC emission factor. The worst-case percent VOC composition is derived based on the January 16 & 19, 2007 "Comprehensive Emissions Test Report" for the PET Reactor Processes at 3M Decatur Film.

Emission Unit Potential-to-Emit Summary (tons/vr)

| Pollutants        | MEOH | VEGT | REGT | DMTT | Emission<br>Unit 04<br>Total |
|-------------------|------|------|------|------|------------------------------|
| PM                |      |      |      | N/A  |                              |
| PM <sub>10</sub>  |      |      |      | N/A  |                              |
| PM <sub>2.5</sub> |      |      |      | N/A  |                              |
| SO <sub>2</sub>   |      |      |      | N/A  |                              |
| NO <sub>x</sub>   |      |      |      | N/A  |                              |
| CO                |      |      |      | N/A  |                              |
| VOC               | 1.58 | 1.75 | 1.75 | N/A  | 5.08                         |
| Lead              |      |      |      | N/A  |                              |
| Single HAP        |      |      |      | N/A  |                              |
| Total HAPs        | 1.50 | 1.67 | 1.67 | N/A  | 4.84                         |

<sup>(1)</sup> Total facility maximum single hap is chlorobenzene; souces that do not emit this HAP are not included.

#### **Emission Unit 04 - Resin Tank Farm**

### Equipment MEOH - Byproduct Methanol Tank (Exhaust 888E005)

| Pollutant         | Emission Max. Factor <sup>(1)</sup> Capacity <sup>(2)</sup> (lb/1000 lb) (lb/hr) |  | Emission<br>Rate<br>(Ibs/hr) | Control<br>Efficiency<br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|----------------------------------------------------------------------------------|--|------------------------------|------------------------------|--------------------------------------------|---------------------------------------------|
| РМ                |                                                                                  |  |                              |                              |                                            | (337.3.7.7                                  |
| PM <sub>10</sub>  |                                                                                  |  |                              |                              |                                            |                                             |
| PM <sub>2.5</sub> |                                                                                  |  |                              |                              |                                            |                                             |
| SO <sub>2</sub>   |                                                                                  |  |                              |                              |                                            |                                             |
| NO <sub>x</sub>   |                                                                                  |  |                              |                              |                                            |                                             |
| co                |                                                                                  |  |                              |                              |                                            |                                             |
| VOC               |                                                                                  |  | 0.36                         |                              | 0.36                                       | 1.58                                        |
| Lead              |                                                                                  |  |                              |                              |                                            |                                             |
| Single HAP        |                                                                                  |  |                              |                              |                                            |                                             |
| Total HAPs*       |                                                                                  |  | 0.34                         |                              | 0.34                                       | 1.50                                        |
| Acetaldehyde      |                                                                                  |  | 0.10                         |                              | 0.10                                       | 0.43                                        |
| Dimethyl ether    |                                                                                  |  | 1.56E-03                     |                              | 1.56E-03                                   | 6.81E-03                                    |
| Dioxane, p-       |                                                                                  |  | 1.56E-03                     |                              | 1.56E-03                                   | 6.81E-03                                    |
| Ethylene          |                                                                                  |  | 1.46E-03                     |                              | 1.46E-03                                   | 6.39E-03                                    |
| Ethylene glycol   |                                                                                  |  | 7.29E-03                     |                              | 7.29E-03                                   | 0.03                                        |
| Ethyl oxide       |                                                                                  |  | 1.46E-03                     |                              | 1.46E-03                                   | 6.39E-03                                    |
| Methanol          |                                                                                  |  | 0.23                         |                              | 0.23                                       | 1.02                                        |
| Methyl acetate    |                                                                                  |  | 9.72E-04                     |                              | 9.72E-04                                   | 4.26E-03                                    |

<sup>(1)</sup> Emission factors derived as discussed for this emission unit, using [CONFIDENTIAL]. Please refer to the April 2003 Title V Renewal application or the original Title V renewal application for details.

#### Equipment VEGT - Virgin EG Tank (Exhaust 888E006)

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(lb/1000 lb) | Max.<br>Capacity <sup>(2)</sup><br>(lb/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency<br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|---------------------------------------------------|--------------------------------------------|------------------------------|------------------------------|--------------------------------------------|---------------------------------------------|
| PM                |                                                   |                                            |                              |                              |                                            |                                             |
| PM <sub>10</sub>  |                                                   |                                            |                              |                              |                                            |                                             |
| PM <sub>2.5</sub> |                                                   |                                            |                              |                              |                                            |                                             |
| SO <sub>2</sub>   |                                                   |                                            |                              |                              |                                            |                                             |
| NO <sub>x</sub>   |                                                   |                                            |                              |                              |                                            |                                             |
| co                |                                                   |                                            |                              |                              |                                            |                                             |
| voc               |                                                   |                                            | 0.40                         |                              | 0.40                                       | 1.75                                        |
| Lead              |                                                   |                                            |                              |                              |                                            |                                             |
| Single HAP        |                                                   |                                            |                              |                              |                                            |                                             |
| Total HAPs*       |                                                   |                                            | 0.38                         |                              | 0.38                                       | 1.67                                        |
| Acetaldehyde      |                                                   |                                            | 0.11                         |                              | 0.11                                       | 0.48                                        |
| Dimethyl ether    |                                                   |                                            | 1.73E-03                     |                              | 1.73E-03                                   | 7.57E-03                                    |
| Dioxane, p-       |                                                   |                                            | 1.73E-03                     |                              | 1.73E-03                                   | 7.57E-03                                    |
| Ethylene          |                                                   |                                            | 1.62E-03                     |                              | 1.62E-03                                   | 7.10E-03                                    |
| Ethylene glycol   |                                                   |                                            | 8.10E-03                     |                              | 8.10E-03                                   | 0.04                                        |
| Ethyl oxide       |                                                   |                                            | 1.62E-03                     |                              | 1.62E-03                                   | 7.10E-03                                    |
| Methanol          |                                                   |                                            | 0.26                         |                              | 0.26                                       | 1.14                                        |
| Methyl acetate    |                                                   |                                            | 1.08E-03                     |                              | 1.08E-03                                   | 4.73E-03                                    |

<sup>(1)</sup> Emission factors derived as discussed for this emission unit, using [CONFIDENTIAL]. Please refer to the April 2003 Title V Renewal application or the original Title V renewal application for details.

<sup>(2)</sup> Maximum capacity is derived as described in the discussion section for this Emission Unit. Please refer to the April 2003 Title V Renewal application or the original Title V renewal application for additional details.

<sup>\*</sup>HAP species include acetaldehyde, p-dioxane, ethylene glycol, and methanol.

<sup>(2)</sup> Maximum capacity is derived as described in the discussion section for this Emission Unit. Please refer to the April 2003 Title V Renewal application or the original Title V renewal application for additional details.

<sup>\*</sup>HAP species include acetaldehyde, p-dioxane, ethylene glycol, and methanol.

#### **Emission Unit 04 - Resin Tank Farm**

#### Equipment REGT - Recovered EG Tank (Exhaust 888E007)

| Pollutant         | Emission Max. Factor <sup>(1)</sup> Capacity <sup>(2)</sup> (lb/1000 lb) (lb/hr) |  | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency<br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|----------------------------------------------------------------------------------|--|------------------------------|------------------------------|--------------------------------------------|---------------------------------------------|
| PM                |                                                                                  |  |                              |                              |                                            |                                             |
| PM <sub>10</sub>  |                                                                                  |  |                              |                              |                                            |                                             |
| PM <sub>2.5</sub> |                                                                                  |  |                              |                              |                                            |                                             |
| SO <sub>2</sub>   |                                                                                  |  |                              |                              |                                            |                                             |
| NO <sub>x</sub>   |                                                                                  |  |                              |                              |                                            |                                             |
| CO                |                                                                                  |  |                              |                              |                                            |                                             |
| VOC               |                                                                                  |  | 0.40                         |                              | 0.40                                       | 1.75                                        |
| Lead              |                                                                                  |  |                              |                              |                                            |                                             |
| Single HAP        |                                                                                  |  |                              |                              |                                            |                                             |
| Total HAPs*       |                                                                                  |  | 0.38                         |                              | 0.38                                       | 1.67                                        |
| Acetaldehyde      |                                                                                  |  | 0.11                         |                              | 0.11                                       | 0.48                                        |
| Dimethyl ether    |                                                                                  |  | 1.73E-03                     |                              | 1.73E-03                                   | 7.57E-03                                    |
| Dioxane, p-       |                                                                                  |  | 1.73E-03                     |                              | 1.73E-03                                   | 7.57E-03                                    |
| Ethylene          |                                                                                  |  | 1.62E-03                     |                              | 1.62E-03                                   | 7.10E-03                                    |
| Ethylene glycol   |                                                                                  |  | 8.10E-03                     |                              | 8.10E-03                                   | 0.04                                        |
| Ethyl oxide       |                                                                                  |  | 1.62E-03                     |                              | 1.62E-03                                   | 7.10E-03                                    |
| Methanol          |                                                                                  |  | 0.26                         |                              | 0.26                                       | 1.14                                        |
| Methyl acetate    |                                                                                  |  | 1.08E-03                     |                              | 1.08E-03                                   | 4.73E-03                                    |

<sup>(1)</sup> Emission factors derived as discussed for this emission unit, using [CONFIDENTIAL]. Please refer to the April 2003 Title V Renewal application or the original Title V renewal application for details.

#### Equipment DMTT - DMT Tank (Exhaust N/A)

(No emission calculations performed; unit has no vent for emissions)

<sup>(2)</sup> Maximum capacity is derived as described in the discussion section for this Emission Unit. Please refer to the April 2003 Title V Renewal application or the original Title V renewal application for additional details.

<sup>\*</sup>HAP species include acetaldehyde, p-dioxane, ethylene glycol, and methanol.

#### Emission Unit 05 - Tanks and Virgin Silo

#### Discussion

- 1. Product throughput for the VSILO originates from the 2005 revised submittal to address CAM applicability.
- 2. The emission factor(s) for the VSILO is/are the sum of the appropriate "Streams" from AP-42 Chapter 6.6.2 "Poly(ethylene Terephthalate)", Table 6.6.2-1 (01/95). Refer to the footnotes to the emission calculations for detain on the selected "stream" factors. One gram per kilogram (g/kg) is equivalent to one pound per thousand pounds (lb/1000lb).
- 3. Where applicable, BH2 Baghouse information from the October 2003 renewal application submittal.
- **4.** Emissions from the distillate fuel oil tanks, FOT1 and FOT2, are calculated using the US EPA TANKS 4.0.9d software and the respective tank parameters used in the October 2003 Title V Renewal application. Please see the TANKS printouts at the end of this attachment. Please note that the TANKS software used in these calculations is a later version than that used in the October 2003 Title V Renewal Application.
- **5.** Emissions from the VSILO are expected to be particulates only; emissions from FOT1 and FOT2 are expected to be VOCs only. No hazardous air pollutants are expected from this equipment.

Emission Unit Potential-to-Emit Summary (tons/yr)

| Pollutant                 | BH2<br>VSILO | FOT1 | FOT2 | Emission<br>Unit 05<br>Total |
|---------------------------|--------------|------|------|------------------------------|
| PM                        | 0.08         |      |      | 0.08                         |
| PM <sub>10</sub>          | 0.08         | -    |      | 0.08                         |
| PM <sub>2.5</sub>         | 0.08         |      |      | 0.08                         |
| SO <sub>2</sub>           |              |      |      |                              |
| NO <sub>x</sub>           |              |      |      |                              |
| CO                        |              |      |      |                              |
| VOC                       |              | 0.12 | 0.04 | 0.16                         |
| Lead                      |              |      |      |                              |
| Single HAP <sup>(1)</sup> |              |      |      |                              |
| Total HAPs                |              |      |      |                              |

<sup>(1)</sup> Total facility maximum single hap is chlorobenzene; souces that do not emit this HAP are not included.

# Equipment VSILO - Virgin Silo Airveying including Master Batch and Virgin Silos (Exhaust 888E001)

Controlled by the BH2 Baghouse

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(lb/1000 lb) | Max.<br>Capacity <sup>(2)</sup><br>(lb/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency <sup>(1)</sup><br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|---------------------------------------------------|--------------------------------------------|------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|
| PM                |                                                   |                                            | 18.30                        | 99.90%                                      | 0.02                                       | 0.08                                        |
| PM <sub>10</sub>  |                                                   |                                            | 18.30                        | 99.90%                                      | 0.02                                       | 0.08                                        |
| PM <sub>2.5</sub> |                                                   |                                            | 18.30                        | 99.90%                                      | 0.02                                       | 0.08                                        |
| SO <sub>2</sub>   |                                                   |                                            |                              |                                             |                                            |                                             |
| NO <sub>x</sub>   |                                                   |                                            |                              |                                             |                                            |                                             |
| CO                |                                                   |                                            |                              |                                             |                                            |                                             |
| VOC               |                                                   |                                            |                              |                                             |                                            |                                             |
| Lead              |                                                   |                                            |                              |                                             |                                            |                                             |
| Single HAP        |                                                   |                                            |                              |                                             |                                            |                                             |
| Total HAPs        |                                                   |                                            |                              |                                             |                                            |                                             |

<sup>(1)</sup> PM emission factor is derived as discussed for this emission unit, using [CONFIDENTIAL]. Control efficiency is selected as discussed for this emission unit. Please refer to the April 2003 Title V Renewal application or the original Title V renewal application for details.

<sup>(2)</sup> Maximum capacity, in pounds of raw material per hour, from the 2005 revised submittal to address CAM applicability.

# Emission Unit 05 - Tanks and Virgin Silo

# Equipment FOT1 - Distillate Fuel Oil Tank (Exhaust 888E008)

| Pollutant           | Emission<br>Factor | Max.<br>Capacity<br>(gal) | Emission<br>Rate <sup>(1)</sup><br>(lbs/hr) | Control<br>Efficiency<br>(%) | Controlled<br>Emission<br>Rate <sup>(1)</sup><br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|---------------------|--------------------|---------------------------|---------------------------------------------|------------------------------|-----------------------------------------------------------|---------------------------------------------|
| PM                  |                    |                           |                                             |                              | (100/111)                                                 | (10/10/71/                                  |
| PM <sub>10</sub>    |                    |                           |                                             |                              |                                                           |                                             |
| PM <sub>2.5</sub>   |                    |                           |                                             |                              |                                                           |                                             |
| SO <sub>2</sub>     |                    |                           |                                             |                              |                                                           |                                             |
| NO <sub>x</sub>     |                    |                           |                                             |                              |                                                           |                                             |
| CO                  |                    |                           |                                             |                              |                                                           |                                             |
| VOC                 |                    |                           | 0.03                                        |                              | 0.03                                                      | 0.12                                        |
| Lead                |                    |                           |                                             |                              |                                                           |                                             |
| Single HAP          |                    |                           |                                             |                              |                                                           |                                             |
| Total HAPs          |                    |                           |                                             |                              |                                                           |                                             |
| (1) Hourly emission | rotos ora baek e   | alaulakasi furus di       |                                             |                              |                                                           |                                             |

<sup>(1)</sup> Hourly emission rates are back-calculated from the annual rates based on 8,760 hours/yr potential operation.

### Equipment FOT2 - Distillate Fuel Oil Tank (Exhaust 888E009)

| Emission<br>Factor | Max.<br>Capacity<br>(lb/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency<br>(%)          | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|--------------------|-----------------------------|------------------------------|---------------------------------------|--------------------------------------------|---------------------------------------------|
|                    |                             |                              |                                       |                                            |                                             |
|                    |                             |                              |                                       |                                            |                                             |
|                    |                             |                              |                                       |                                            |                                             |
|                    |                             |                              |                                       |                                            |                                             |
|                    |                             |                              |                                       |                                            |                                             |
|                    |                             |                              |                                       |                                            |                                             |
|                    |                             | 9.30E-03                     |                                       | 9.30F-03                                   | 0.04                                        |
|                    |                             |                              |                                       |                                            |                                             |
|                    |                             |                              |                                       |                                            |                                             |
|                    |                             |                              |                                       |                                            |                                             |
|                    | Factor                      | Factor Capacity              | Factor Capacity (lb/hr) Rate (lbs/hr) | Capacity (lb/hr)                           | Emission Factor                             |

<sup>(1)</sup> Hourly emission rates are back-calculated from the annual rates based on 8,760 hours/yr potential operation.

#### Emission Unit 06 - G1 Film Line

#### Discussion

- 1. Particulate emission factor of [CONFIDENTIAL]. One gram per kilogram (g/kg) is equivalent to one pound per thousand pounds (lb/1000lb).
- 2. Where applicable, BH7 Baghouse control efficiency from the October 2003 renewal application submittal; BH12 Baghouse control efficiency derived from the April 4, 2006 written response to SCDHEC comments; and BH13 Baghouse control efficiency derived from the written notification to install the unit submitted to SCDHEC May 17, 2006
- 3. Except for the G1ET unit, product throughput for each unit originates from either the October 2003 renewal application submittal, or the 2005 revised submittal to address CAM applicability.
- 4. All dryers & ovens included with this emission unit is/are powered by electricity. Fuel combustion emissions are not included.
- 5. VOC potential emissions for the G1XT and G1TN emission units are calculated based on the information provided in the October 2003 Title V Renewal application. Please refer to that document for additional details.

Emission Unit Potential-to-Emit Summary (tons/vr)

|                   | BH13          | BH7      | BH12 |      |       |         |                              |
|-------------------|---------------|----------|------|------|-------|---------|------------------------------|
| Pollutant         | DTOW1<br>G1DT | G1GR     | G1ET | G1XT | G1TN  | OLS     | Emission<br>Unit 06<br>Total |
| PM                | 0.08          | 6.66E-03 | 0.02 |      |       | Removed | 0.11                         |
| PM <sub>10</sub>  | 0.08          | 6.66E-03 | 0.02 |      |       | Removed | 0.11                         |
| PM <sub>2.5</sub> | 0.08          | 6.66E-03 | 0.02 |      |       | Removed | 0.11                         |
| SO <sub>2</sub>   |               |          |      |      |       | Removed |                              |
| NO <sub>x</sub>   |               |          |      |      |       | Removed |                              |
| CO                |               |          |      |      |       | Removed |                              |
| VOC               |               |          |      | 0.57 | 39.42 | Removed | 39.99                        |
| Lead              |               |          |      |      |       | Removed |                              |
| Single HAP        |               |          |      |      |       | Removed |                              |
| Total HAPs        |               |          |      | 0.57 | 8.97  | Removed | 9.54                         |

<sup>(1)</sup> Total facility maximum single hap is chlorobenzene; souces that do not emit this HAP are not included.

#### Equipment DTOW1 - G1 Dryer Airveying (Exhaust 888E039)

Includes emissions from Equipment G1DT - G1 Dryer Tower

Controlled by the BH13 Baghouse

| Emission<br>Factor <sup>(1)</sup><br>(lb/1000 lb) | Max.<br>Capacity <sup>(2)</sup><br>(lbs/hr) | Emission<br>Rate<br>(lbs/hr)                           | Control<br>Efficiency <sup>(1)</sup><br>(%)                                                          | Controlled<br>Emission<br>Rate<br>(lbs/hr)                                                                                | Controlled<br>Emission<br>Rate<br>(tons/yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------|---------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                   |                                             | 19.00                                                  | 99.90%                                                                                               | 0.02                                                                                                                      | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                   |                                             | 19.00                                                  | 99.90%                                                                                               | 0.02                                                                                                                      | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                   |                                             | 19.00                                                  | 99.90%                                                                                               | 0.02                                                                                                                      | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                   |                                             |                                                        |                                                                                                      |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                   |                                             |                                                        |                                                                                                      |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                   |                                             |                                                        |                                                                                                      |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                   |                                             |                                                        |                                                                                                      |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                   |                                             |                                                        |                                                                                                      |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                   |                                             |                                                        |                                                                                                      |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                   |                                             |                                                        |                                                                                                      |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                   | Factor <sup>(1)</sup><br>(lb/1000 lb)       | Factor <sup>(1)</sup> Capacity <sup>(2)</sup> (lbs/hr) | Factor <sup>(1)</sup> (lb/1000 lb) Capacity <sup>(2)</sup> (lbs/hr) Rate (lbs/hr)  19.00 19.00 19.00 | Factor <sup>(1)</sup> (Ibs/hr) Capacity <sup>(2)</sup> (Ibs/hr) Rate (Ibs/hr) (%)  19.00 99.90% 19.00 99.90% 19.00 99.90% | Factor   Factor   Capacity   Ca |

<sup>(1)</sup> Emission factor and pollution control efficiency (where applicable) selected per the discussion.

<sup>(2)</sup> Maximum capacity, in pounds of raw material per hour, from the 2005 revised submittal to address CAM applicability.

#### **Emission Unit 06 - G1 Film Line**

#### Equipment G1GR - G1 Grinder Airveying (Exhaust 007E005)

Controlled by the BH7 Baghouse

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(lb/1000 lb) | Max.<br>Capacity <sup>(2)</sup><br>(Ibs/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency <sup>(1)</sup><br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|---------------------------------------------------|---------------------------------------------|------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|
| PM                |                                                   |                                             | 1.52                         | 99.90%                                      | 1.52E-03                                   | 6.66E-03                                    |
| PM <sub>10</sub>  |                                                   |                                             | 1.52                         | 99.90%                                      | 1.52E-03                                   | 6.66E-03                                    |
| PM <sub>2.5</sub> |                                                   |                                             | 1.52                         | 99.90%                                      | 1.52E-03                                   | 6.66E-03                                    |
| SO <sub>2</sub>   |                                                   |                                             |                              |                                             |                                            |                                             |
| NO <sub>x</sub>   |                                                   |                                             |                              |                                             |                                            |                                             |
| CO                |                                                   |                                             |                              |                                             |                                            |                                             |
| VOC               |                                                   |                                             |                              |                                             |                                            |                                             |
| Lead              |                                                   |                                             |                              |                                             |                                            |                                             |
| Single HAP        |                                                   |                                             |                              |                                             |                                            |                                             |
| Total HAPs        |                                                   |                                             |                              |                                             |                                            |                                             |

<sup>(1)</sup> Emission factor and pollution control efficiency (where applicable) selected per the discussion.

# Equipment G1ET - G1 Edge Trimmer including Airveying (Exhaust 888E038) Controlled by the BH12 Baghouse

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(lb/1000 lb) | Max.<br>Capacity <sup>(2)</sup><br>(lbs/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency <sup>(1)</sup><br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|---------------------------------------------------|---------------------------------------------|------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|
| PM                |                                                   |                                             | 0.56                         | 99.00%                                      | 5.60E-03                                   | 0.02                                        |
| PM <sub>10</sub>  |                                                   |                                             | 0.56                         | 99.00%                                      | 5.60E-03                                   | 0.02                                        |
| PM <sub>2.5</sub> |                                                   |                                             | 0.56                         | 99.00%                                      | 5.60E-03                                   | 0.02                                        |
| SO <sub>2</sub>   |                                                   |                                             |                              |                                             |                                            |                                             |
| NO <sub>x</sub>   |                                                   |                                             |                              |                                             |                                            |                                             |
| CO                |                                                   |                                             |                              |                                             |                                            |                                             |
| VOC               |                                                   |                                             |                              |                                             |                                            |                                             |
| Lead              |                                                   |                                             |                              |                                             |                                            |                                             |
| Single HAP        |                                                   |                                             |                              |                                             |                                            |                                             |
| Total HAPs        |                                                   |                                             |                              |                                             |                                            |                                             |

<sup>(1)</sup> Emission factor and pollution control efficiency (where applicable) selected per the discussion.

#### Equipment G1XT - G1 Extruder (Exhaust 001E057)

|                   |                                          |                              |                              |                              | _                                          |                                             |
|-------------------|------------------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------------------|---------------------------------------------|
| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(%) | Max.<br>Capacity<br>(lbs/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency<br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
| PM                |                                          |                              |                              |                              |                                            |                                             |
| PM <sub>10</sub>  |                                          |                              |                              |                              |                                            |                                             |
| PM <sub>2.5</sub> |                                          |                              |                              |                              |                                            |                                             |
| SO <sub>2</sub>   |                                          |                              |                              |                              |                                            |                                             |
| NO <sub>x</sub>   |                                          |                              |                              |                              |                                            |                                             |
| CO                |                                          |                              |                              |                              |                                            |                                             |
| VOC               |                                          |                              | 0.13                         |                              | 0.13                                       | 0.57                                        |
| Lead              |                                          |                              |                              |                              |                                            |                                             |
| Single HAP        |                                          |                              |                              |                              |                                            |                                             |
| Total HAPs        |                                          |                              | 0.13                         |                              | 0.13                                       | 0.57                                        |
| Acetaldehyde      |                                          |                              | 0.13                         |                              | 0.13                                       | 0.57                                        |

<sup>(1)</sup> Emission factors back-calculated based on the listed uncontrolled emission rate, obtained from Emissions Testing—see the October 2003 Title V Renewal application for additional details—and the listed maximum capacity.

<sup>(2)</sup> Maximum capacity, in pounds of raw material per hour, from the 2005 revised submittal to address CAM applicability.

<sup>(2)</sup> Maximum capacity is from the April 4, 2006 written response to SCDHEC comments

#### **Emission Unit 06 - G1 Film Line**

#### Equipment G1TN - G1 Tenter (Exhaust 001E002)

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(%) | Max.<br>Capacity<br>(lbs/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency<br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|------------------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------------------|---------------------------------------------|
| PM                |                                          |                              |                              |                              |                                            |                                             |
| PM <sub>10</sub>  |                                          |                              |                              |                              |                                            |                                             |
| PM <sub>2.5</sub> |                                          |                              |                              |                              |                                            |                                             |
| SO <sub>2</sub>   |                                          |                              |                              |                              |                                            |                                             |
| NO <sub>x</sub>   |                                          |                              |                              |                              |                                            |                                             |
| CO                |                                          |                              |                              |                              |                                            |                                             |
| VOC               |                                          |                              | 9.00                         |                              | 9.00                                       | 39.42                                       |
| Lead              |                                          |                              |                              |                              |                                            |                                             |
| Single HAP        |                                          |                              |                              |                              |                                            |                                             |
| Total HAPs        |                                          |                              | 2.05                         |                              | 2.05                                       | 8.97                                        |
| Antimony          |                                          |                              | 0.02                         |                              | 0.02                                       | 0.07                                        |
| Diethanolamine    |                                          |                              | 0.01                         |                              | 0.01                                       | 0.05                                        |
| Ethyl acrylate    |                                          |                              | 0.11                         |                              | 0.11                                       | 0.48                                        |
| Formaldehyde      |                                          |                              | 7.00E-03                     |                              | 7.00E-03                                   |                                             |
| Glycol ethers     |                                          |                              | 0.25                         |                              | 0.25                                       |                                             |
| Methanol          |                                          |                              | 0.50                         |                              | 0.50                                       |                                             |
| MEK               |                                          |                              | 0.10                         |                              | 0.10                                       |                                             |
| MIBK              |                                          |                              | 2.00E-03                     |                              | 2.00E-03                                   |                                             |
| Methyl methaci    |                                          |                              | 1.05                         |                              | 1.05                                       | 4.60                                        |

<sup>(1)</sup> Emission factors back-calculated based on the listed uncontrolled emission rate, obtained from Material Balance—see the October 2003 Title V Renewal application for additional details--and the listed maximum capacity.

#### Equipment OLS - OLS (Exhaust 001E043)

(No emission calculations performed; equipment has been removed)

<sup>\*</sup>HAP species do not include MEK.

#### Emission Unit 07 - G2 Film Line

#### Discussion

- 1. Particulate emission factor of [CONFIDENTIAL]. One gram per kilogram (g/kg) is equivalent to one pound per thousand pounds (lb/1000lb).
- 2. Where applicable, BH5, BH6, and BH11 Baghouse information is from the October 2003 renewal application submittal.
- 3. Product throughput for each unit originates from either the October 2003 renewal application submittal, or the 2005 revised submittal to address CAM applicability.
- 4. All dryers & ovens included with this emission unit is/are powered by electricity. Fuel combustion emissions are not included.
- 5. VOC potential emissions for the G2XT, G2PC, and G2GC emission units are calculated based on the information provided in the October 2003 Title V Renewal application. Please refer to that document for additional details.

Emission Unit Potential-to-Emit Summary (tons/yr)

|                           | BH5           | BH6  | BH11 |      |       |       |     | Emission         |
|---------------------------|---------------|------|------|------|-------|-------|-----|------------------|
| Pollutant                 | DTOW2<br>G2DT | G2GR | G2ET | G2XT | G2PC  | G2GC  | G2C | Unit 07<br>Total |
| PM                        | N/A           | 0.02 | 0.07 |      |       |       | N/A | 0.09             |
| PM <sub>10</sub>          | N/A           | 0.02 | 0.07 |      |       |       | N/A | 0.09             |
| PM <sub>2.5</sub>         | N/A           | 0.02 | 0.07 |      |       |       | N/A | 0.09             |
| SO <sub>2</sub>           | N/A           |      |      |      |       |       | N/A |                  |
| NO <sub>x</sub>           | N/A           |      |      |      |       |       | N/A |                  |
| CO                        | N/A           |      |      |      |       |       | N/A |                  |
| VOC                       | N/A           |      |      | 0.96 | 40.30 | 40.30 | N/A | 81.56            |
| Lead                      | N/A           |      |      |      |       |       | N/A |                  |
| Single HAP <sup>(1)</sup> | N/A           |      |      |      |       |       | N/A |                  |
| Total HAPs                | N/A           |      |      | 0.96 | 8.97  | 8.97  | N/A | 18.90            |

<sup>(1)</sup> Total facility maximum single hap is chlorobenzene; souces that do not emit this HAP are not included.

#### Equipment DTOW2 - G2 Dryer Airveying (Exhaust 007E008)

Includes emissions from Equipment G2DT - G2 Dryer Tower Controlled by the BH5 Badhouse

(Emissions for this equipment is calcualted as part of DTOW1)

# Equipment G2GR - G2 Grinder including Airveying (Exhaust 007E007)

Controlled by the BH6 Baghouse

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(lb/1000 lb) | Max.<br>Capacity <sup>(2)</sup><br>(lbs/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency <sup>(1)</sup><br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|---------------------------------------------------|---------------------------------------------|------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|
| PM                |                                                   |                                             | 4.00                         | 99.90%                                      | 4.00E-03                                   | 0.02                                        |
| PM <sub>10</sub>  |                                                   |                                             | 4.00                         | 99.90%                                      | 4.00E-03                                   | 0.02                                        |
| PM <sub>2.5</sub> |                                                   |                                             | 4.00                         | 99.90%                                      | 4.00E-03                                   | 0.02                                        |
| SO <sub>2</sub>   |                                                   |                                             |                              |                                             |                                            |                                             |
| NO <sub>x</sub>   |                                                   |                                             |                              |                                             |                                            |                                             |
| CO                |                                                   |                                             |                              |                                             |                                            |                                             |
| VOC               |                                                   |                                             |                              |                                             |                                            |                                             |
| Lead              |                                                   |                                             |                              |                                             |                                            |                                             |
| Single HAP        |                                                   |                                             |                              |                                             |                                            |                                             |
| Total HAPs        |                                                   |                                             |                              |                                             |                                            |                                             |

<sup>(1)</sup> Emission factor and pollution control efficiency (where applicable) selected per the discussion.

<sup>(2)</sup> Maximum capacity, in pounds of raw material per hour, from the 2005 revised submittal to address CAM applicability.

#### Emission Unit 07 - G2 Film Line

Equipment G2ET - G2 Edge Trim including Airveying (Exhaust 007E006)

Controlled by the BH11 Baghouse

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(lb/1000 lb) | Max.<br>Capacity <sup>(2)</sup><br>(lbs/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency <sup>(1)</sup><br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|---------------------------------------------------|---------------------------------------------|------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|
| PM                |                                                   |                                             | 16.46                        | 99.90%                                      | 0.02                                       | 0.07                                        |
| PM <sub>10</sub>  |                                                   |                                             | 16.46                        | 99.90%                                      | 0.02                                       | 0.07                                        |
| PM <sub>2.5</sub> |                                                   |                                             | 16.46                        | 99.90%                                      | 0.02                                       | 0.07                                        |
| SO <sub>2</sub>   |                                                   |                                             |                              |                                             |                                            |                                             |
| NO <sub>x</sub>   |                                                   |                                             |                              |                                             |                                            |                                             |
| CO                |                                                   |                                             |                              |                                             |                                            |                                             |
| VOC               |                                                   |                                             |                              |                                             |                                            |                                             |
| Lead              |                                                   |                                             |                              |                                             |                                            |                                             |
| Single HAP        |                                                   |                                             |                              |                                             |                                            |                                             |
| Total HAPs        |                                                   |                                             |                              |                                             |                                            |                                             |

<sup>(1)</sup> Emission factor and pollution control efficiency (where applicable) selected per the discussion.

#### Equipment G2XT - G2 Extruder (Exhaust 007E073)

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(%) | Max.<br>Capacity<br>(lbs/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency<br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|------------------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------------------|---------------------------------------------|
| PM                |                                          |                              |                              |                              |                                            |                                             |
| PM <sub>10</sub>  |                                          |                              |                              |                              |                                            |                                             |
| PM <sub>2.5</sub> |                                          |                              |                              |                              |                                            |                                             |
| SO <sub>2</sub>   |                                          |                              |                              |                              |                                            |                                             |
| NO <sub>x</sub>   |                                          |                              |                              |                              |                                            |                                             |
| CO                |                                          |                              |                              |                              |                                            |                                             |
| VOC               |                                          |                              | 0.22                         |                              | 0.22                                       | 0.96                                        |
| Lead              |                                          |                              |                              |                              |                                            |                                             |
| Single HAP        |                                          |                              |                              |                              |                                            |                                             |
| Total HAPs        |                                          |                              | 0.22                         |                              | 0.22                                       | 0.96                                        |
| Acetaldehyde      |                                          |                              | 0.22                         |                              | 0.22                                       | 0.96                                        |

<sup>(1)</sup> Emission factors back-calculated based on the listed uncontrolled emission rate, obtained from Emissions Testing—see the October 2003 Title V Renewal application for additional details—and the listed maximum capacity.

<sup>(2)</sup> Maximum capacity, in pounds of raw material per hour, from the 2005 revised submittal to address CAM applicability.

#### **Emission Unit 07 - G2 Film Line**

#### Equipment G2PC - P Coater (Exhaust 007E003, 004)

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(%) | Max.<br>Capacity<br>(lbs/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency<br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|------------------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------------------|---------------------------------------------|
| PM                |                                          |                              |                              |                              |                                            |                                             |
| PM <sub>10</sub>  |                                          |                              |                              |                              |                                            |                                             |
| PM <sub>2.5</sub> |                                          |                              |                              |                              |                                            |                                             |
| SO <sub>2</sub>   |                                          |                              |                              |                              |                                            |                                             |
| NO <sub>x</sub>   |                                          |                              |                              |                              |                                            |                                             |
| CO                |                                          |                              |                              |                              |                                            |                                             |
| VOC               |                                          |                              | 9.20                         |                              | 9.20                                       | 40.30                                       |
| Lead              |                                          |                              |                              |                              |                                            |                                             |
| Single HAP        |                                          |                              |                              |                              |                                            |                                             |
| Total HAPs        |                                          |                              | 2.05                         |                              | 2.05                                       | 8.97                                        |
| Antimony          |                                          |                              | 0.02                         |                              | 0.02                                       | 0.07                                        |
| Diethanolamine    |                                          |                              | 0.01                         |                              | 0.01                                       | 0.05                                        |
| Ethyl acrylate    |                                          |                              | 0.11                         |                              | 0.11                                       | 0.48                                        |
| Formaldehyde      |                                          |                              | 7.00E-03                     |                              | 7.00E-03                                   | 0.03                                        |
| Glycol ethers     |                                          |                              | 0.25                         |                              | 0.25                                       | 1.10                                        |
| Methanol          |                                          |                              | 0.50                         |                              | 0.50                                       | 2.19                                        |
| MEK               |                                          |                              | 0.10                         |                              | 0.10                                       | 0.44                                        |
| MIBK              |                                          |                              | 2.00E-03                     |                              | 2.00E-03                                   | 8.76E-03                                    |
| Methyl methacr    |                                          |                              | 1.05                         |                              | 1.05                                       | 4.60                                        |

<sup>(1)</sup> Emission factors back-calculated based on the listed uncontrolled emission rate, obtained from Material Balance—see the October 2003 Title V Renewal application for additional details—and the listed maximum capacity.

#### Equipment G2GC - G Coater (Exhaust 007E001, 002)

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(%) | Max.<br>Capacity<br>(lbs/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency<br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|------------------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------------------|---------------------------------------------|
| PM                |                                          |                              |                              |                              |                                            |                                             |
| PM <sub>10</sub>  |                                          |                              |                              |                              |                                            |                                             |
| PM <sub>2.5</sub> |                                          |                              |                              |                              |                                            |                                             |
| SO <sub>2</sub>   |                                          |                              |                              |                              |                                            | ]                                           |
| NO <sub>x</sub>   |                                          |                              |                              |                              |                                            |                                             |
| CO                |                                          |                              |                              |                              |                                            |                                             |
| VOC               |                                          |                              | 9.20                         |                              | 9.20                                       | 40.30                                       |
| Lead              |                                          |                              |                              |                              |                                            |                                             |
| Single HAP        |                                          |                              |                              |                              |                                            |                                             |
| Total HAPs        |                                          |                              | 2.05                         |                              | 2.05                                       | 8.97                                        |
| Antimony          |                                          |                              | 0.02                         |                              | 0.02                                       | 0.07                                        |
| Diethanolamine    |                                          |                              | 0.01                         |                              | 0.01                                       | 0.05                                        |
| Ethyl acrylate    |                                          |                              | 0.11                         |                              | 0.11                                       | 0.48                                        |
| Formaldehyde      |                                          |                              | 7.00E-03                     |                              | 7.00E-03                                   | 0.03                                        |
| Glycol ethers     |                                          |                              | 0.25                         |                              | 0.25                                       | 1.10                                        |
| Methanol          |                                          |                              | 0.50                         |                              | 0.50                                       | 2.19                                        |
| MEK               |                                          |                              | 0.10                         |                              | 0.10                                       | 0.44                                        |
| MIBK              |                                          |                              | 2.00E-03                     |                              | 2.00E-03                                   | 8.76E-03                                    |
| Methyl methacr    |                                          |                              | 1.05                         |                              | 1.05                                       | 4.60                                        |

<sup>(1)</sup> Emission factors back-calculated based on the listed uncontrolled emission rate, obtained from Material Balance--see the October 2003 Title V Renewal application for additional details--and the listed maximum capacity.

<sup>\*</sup>HAP species do not include MEK.

<sup>\*</sup>HAP species do not include MEK.

# 3M Greenville Film - Greenville, SC Title V Air Permit Renewal Application

#### **Emission Unit 07 - G2 Film Line**

Equipment G2C - C Oven (Exhaust 008E001)

(No emission calculations performed; equipment is electrical and exhaust is heat only)

# **Emission Unit 08 - Visual Converting Process**

#### Discussion

- 1. All equipment in this emission unit is/are expected to emit only particulates during normal operation.
- 2. All annual/hourly emission rates for the equipment included in this Emission Unit are determined through engineering estimates. The emission factors--presented for these units for completeness, only--are back-calculated based on the engineering-estimated emission rates.
- 3. All BH9 Baghouse information from the October 2003 renewal application submittal.
- 4. Product throughput for each unit originates from the October 2003 renewal application submittal, or the 2005 revised submittal to address CAM applicability.

Emission Unit Potential-to-Emit Summary (tons/yr)

|                           | В         | H9 Baghous | e        | Emission         |
|---------------------------|-----------|------------|----------|------------------|
| Pollutant                 | CT01 CT02 |            | VSET     | Unit 08<br>Total |
| PM                        | 2.50E-04  | Removed    | 4.38E-03 | 4.63E-03         |
| PM <sub>10</sub>          | 2.50E-04  | Removed    | 4.38E-03 | 4.63E-03         |
| PM <sub>2.5</sub>         | 2.50E-04  | Removed    | 4.38E-03 | 4.63E-03         |
| SO <sub>2</sub>           |           | Removed    |          |                  |
| NO <sub>x</sub>           |           | Removed    |          |                  |
| co                        |           | Removed    |          |                  |
| voc                       |           | Removed    |          |                  |
| Lead                      |           | Removed    |          |                  |
| Single HAP <sup>(1)</sup> |           | Removed    |          |                  |
| Total HAPs                |           | Removed    |          |                  |

<sup>(1)</sup> Total facility maximum single hap is chlorobenzene; souces that do not emit this HAP are not included.

Equipment CT01 - Cut-to-Size 1 with Collection Cyclone Separator 1 (Exhaust 888E035)

Controlled by the BH9 Baghouse

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(lb/box) | Max.<br>Capacity <sup>(2)</sup><br>(boxes/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency <sup>(1)</sup><br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|-----------------------------------------------|-----------------------------------------------|------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|
| PM                |                                               |                                               | 0.11                         | 99.95%                                      | 5.70E-05                                   | 2.50E-04                                    |
| PM <sub>10</sub>  |                                               |                                               | 0.11                         | 99.95%                                      | 5.70E-05                                   | 2.50E-04                                    |
| PM <sub>2.5</sub> |                                               |                                               | 0.11                         | 99.95%                                      | 5.70E-05                                   | 2.50E-04                                    |
| SO <sub>2</sub>   |                                               |                                               |                              |                                             |                                            |                                             |
| NO <sub>x</sub>   |                                               |                                               |                              |                                             |                                            |                                             |
| co                |                                               |                                               |                              |                                             |                                            |                                             |
| voc               |                                               |                                               |                              |                                             |                                            |                                             |
| Lead              |                                               |                                               |                              |                                             |                                            |                                             |
| Single HAP        |                                               |                                               |                              |                                             |                                            |                                             |
| Total HAPs        |                                               |                                               |                              |                                             |                                            |                                             |

<sup>(1)</sup> Emission factor and pollution control efficiency (where applicable) selected per the discussion.

# Equipment CT02 - Cut-to-Size 2 with Collection Cyclone Separator 2 (Exhaust 888E035)

(No emission calculations performed; equipment has been removed)

<sup>(2)</sup> Maximum capacity, in boxes per hour, from the October 2003 renewal application submittal.

### **Emission Unit 08 - Visual Converting Process**

# Equipment VSET - VSET Edge (Exhaust 888E035) Controlled by the BH9 Baghouse

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(lbs/lb) | Max.<br>Capacity <sup>(2)</sup><br>(lbs/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency <sup>(1)</sup><br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|-----------------------------------------------|---------------------------------------------|------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|
| PM                |                                               |                                             | 2.00                         | 99.95%                                      | 1.00E-03                                   | 4.38E-03                                    |
| PM <sub>10</sub>  |                                               |                                             | 2.00                         | 99.95%                                      | 1.00E-03                                   | 4.38E-03                                    |
| PM <sub>2.5</sub> |                                               |                                             | 2.00                         | 99.95%                                      | 1.00E-03                                   | 4.38E-03                                    |
| SO <sub>2</sub>   |                                               |                                             |                              |                                             |                                            |                                             |
| NO <sub>x</sub>   |                                               |                                             |                              |                                             |                                            |                                             |
| CO                |                                               |                                             |                              |                                             |                                            |                                             |
| VOC               |                                               |                                             |                              |                                             |                                            |                                             |
| Lead              |                                               |                                             |                              |                                             |                                            |                                             |
| Single HAP        |                                               |                                             |                              |                                             |                                            |                                             |
| Total HAPs        |                                               |                                             |                              |                                             |                                            |                                             |

<sup>(1)</sup> Emission factor and pollution control efficiency (where applicable) selected per the discussion.

<sup>(2)</sup> Maximum capacity, in pounds of raw material per hour, from the 2005 revised submittal to address CAM applicability.

#### **Emission Unit 09 - PET Reclaim Process**

#### Discussion

- 1. All equipment in this emission unit is/are expected to emit only particulates during normal operation.
- **2.** Particulate emission factor of [CONFIDENTIAL]. One gram per kilogram (g/kg) is equivalent to one pound per thousand pounds (lb/1000lb).
- 3. Where applicable, BH3, BH4, and BH10 Baghouse information from the October 2003 renewal application submittal.
- 4. Product throughput for each unit originates from either the October 2003 renewal application submittal, or the 2005 revised submittal to address CAM applicability.

Emission Unit Potential-to-Emit Summary (tons/vr)

|                           | BH3   | BH4   |      | BH10 | Emission         |
|---------------------------|-------|-------|------|------|------------------|
| Pollutant                 | RSILO | FSILO | PTZR | RBFG | Unit 09<br>Total |
| PM                        | 0.06  | 0.06  | N/A  | 0.56 | 0.68             |
| PM <sub>10</sub>          | 0.06  | 0.06  | N/A  | 0.56 | 0.68             |
| PM <sub>2.5</sub>         | 0.06  | 0.06  | N/A  | 0.56 | 0.68             |
| SO <sub>2</sub>           |       |       | N/A  |      |                  |
| NO <sub>x</sub>           |       |       | N/A  |      |                  |
| CO                        |       |       | N/A  |      |                  |
| VOC                       |       |       | N/A  |      |                  |
| Lead                      |       |       | N/A  |      |                  |
| Single HAP <sup>(1)</sup> |       |       | N/A  |      |                  |
| Total HAPs                |       |       | N/A  |      |                  |

<sup>(1)</sup> Total facility maximum single hap is chlorobenzene; souces that do not emit this HAP are not included.

Equipment RSILO - Reclaim Silo Airveying including Reclaim and other Virgin Silos (Exhaust 888E002) Controlled by the BH3 Baghouse

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(lb/1000 lb) | Max.<br>Capacity <sup>(2)</sup><br>(lbs/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency <sup>(1)</sup><br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|---------------------------------------------------|---------------------------------------------|------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|
| PM                |                                                   |                                             | 12.89                        | 99.90%                                      | 0.01                                       | 0.06                                        |
| PM <sub>10</sub>  |                                                   |                                             | 12.89                        | 99.90%                                      | 0.01                                       | 0.06                                        |
| PM <sub>2.5</sub> |                                                   |                                             | 12.89                        | 99.90%                                      | 0.01                                       | 0.06                                        |
| SO <sub>2</sub>   |                                                   |                                             |                              |                                             |                                            |                                             |
| NO <sub>x</sub>   |                                                   |                                             |                              |                                             |                                            |                                             |
| CO                |                                                   |                                             |                              |                                             |                                            |                                             |
| VOC               |                                                   |                                             |                              |                                             |                                            |                                             |
| Lead              |                                                   |                                             |                              |                                             |                                            |                                             |
| Single HAP        |                                                   |                                             |                              |                                             |                                            |                                             |
| Total HAPs        |                                                   |                                             |                              |                                             |                                            |                                             |

<sup>(1)</sup> Emission factor and pollution control efficiency (where applicable) selected per the discussion.

<sup>(2)</sup> Maximum capacity, in pounds of raw material per hour, from the 2005 revised submittal to address CAM applicability.

#### **Emission Unit 09 - PET Reclaim Process**

Equipment FSILO - Flake Silo including Airveying (Exhaust 009E014)

Controlled by the BH4 Baghouse

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(lb/1000 lb) | Max.<br>Capacity <sup>(2)</sup><br>(lbs/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency <sup>(1)</sup><br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|---------------------------------------------------|---------------------------------------------|------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|
| PM                |                                                   |                                             | 12.89                        | 99.90%                                      | 0.01                                       | 0.06                                        |
| PM <sub>10</sub>  |                                                   |                                             | 12.89                        | 99.90%                                      | 0.01                                       | 0.06                                        |
| PM <sub>2.5</sub> |                                                   |                                             | 12.89                        | 99.90%                                      | 0.01                                       | 0.06                                        |
| SO <sub>2</sub>   |                                                   |                                             |                              |                                             |                                            |                                             |
| NO <sub>x</sub>   |                                                   |                                             |                              |                                             |                                            |                                             |
| CO                |                                                   |                                             |                              |                                             |                                            |                                             |
| VOC               |                                                   |                                             |                              |                                             |                                            |                                             |
| Lead              |                                                   |                                             |                              |                                             |                                            |                                             |
| Single HAP        |                                                   |                                             |                              |                                             |                                            |                                             |
| Total HAPs        |                                                   |                                             |                              |                                             |                                            |                                             |

<sup>(1)</sup> Emission factor and pollution control efficiency (where applicable) selected per the discussion.

#### Equipment PTZR - Reclaim Pelletizers (No Exhaust)

(No emission calculations performed; unit has no vent for emissions)

Equipment RBFG - PET Reclaim Fugitives (Exhaust 888E037)

Controlled by the BH10 Baghouse

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(lb/1000 lb) | Max.<br>Capacity <sup>(2)</sup><br>(lbs/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency <sup>(1)</sup><br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|---------------------------------------------------|---------------------------------------------|------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|
| PM                |                                                   |                                             | 12.89                        | 99.00%                                      | 0.13                                       | 0.56                                        |
| PM <sub>10</sub>  |                                                   |                                             | 12.89                        | 99.00%                                      | 0.13                                       | 0.56                                        |
| PM <sub>2.5</sub> |                                                   |                                             | 12.89                        | 99.00%                                      | 0.13                                       | 0.56                                        |
| SO <sub>2</sub>   |                                                   |                                             |                              |                                             |                                            |                                             |
| NO <sub>x</sub>   |                                                   |                                             |                              |                                             |                                            |                                             |
| CO                |                                                   |                                             |                              |                                             |                                            |                                             |
| VOC               |                                                   |                                             |                              |                                             |                                            |                                             |
| Lead              |                                                   |                                             |                              |                                             |                                            |                                             |
| Single HAP        |                                                   |                                             |                              |                                             |                                            |                                             |
| Total HAPs        |                                                   |                                             |                              |                                             |                                            |                                             |

<sup>(1)</sup> Emission factor and pollution control efficiency (where applicable) selected per the discussion.

<sup>(2)</sup> Maximum capacity, in pounds of raw material per hour, from the 2005 revised submittal to address CAM applicability.

<sup>(2)</sup> Maximum capacity, in pounds of raw material per hour, from the 2005 revised submittal to address CAM applicability.

#### Emission Unit 10 - Box/Tote Material Handling

#### Discussion

- 1. All equipment in this emission unit is/are expected to emit only particulates during normal operation.
- 2. Particulate emission factor of [CONFIDENTIAL]. One gram per kilogram (g/kg) is equivalent to one pound per thousand pounds (lb/1000lb).
- 3. Where applicable, BH1 Baghouse information is from the October 2003 renewal application submittal.
- 4. Product throughput for each unit originates from either the October 2003 renewal application submittal, or the 2005 revised submittal to address CAM applicability.

#### Emission Unit Potential-to-Emit Summary (tons/yr)

|                   | BH1  | Emission         |  |
|-------------------|------|------------------|--|
| Pollutant         | BTLU | Unit 10<br>Total |  |
| РМ                | 0.06 | 0.06             |  |
| PM <sub>10</sub>  | 0.06 | 0.06             |  |
| PM <sub>2.5</sub> | 0.06 | 0.06             |  |
| SO <sub>2</sub>   |      |                  |  |
| NO <sub>x</sub>   |      |                  |  |
| CO                |      |                  |  |
| VOC               |      |                  |  |
| Lead              |      |                  |  |
| Single HAP(1)     |      |                  |  |
| Total HAPs        |      |                  |  |
|                   |      |                  |  |

<sup>(1)</sup> Total facility maximum single hap is chlorobenzene; souces that do not emit this HAP are not included.

#### Equipment BTLU - Box/Tote Airveying (Exhaust 009E015)

Controlled by the BH1 Baghouse

| Emission<br>Factor <sup>(1)</sup><br>(lb/1000 lb) | Max.<br>Capacity <sup>(2)</sup><br>(lbs/hr) | Emission<br>Rate<br>(lbs/hr)                  | Control<br>Efficiency <sup>(1)</sup><br>(%)                                                          | Controlled<br>Emission<br>Rate<br>(lbs/hr)                                                                                    | Controlled<br>Emission<br>Rate<br>(tons/yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------|---------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                   |                                             | 13.80                                         | 99.90%                                                                                               | 0.01                                                                                                                          | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                   |                                             | 13.80                                         | 99.90%                                                                                               | 0.01                                                                                                                          | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                   |                                             | 13.80                                         | 99.90%                                                                                               | 0.01                                                                                                                          | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                   |                                             |                                               |                                                                                                      |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                   |                                             |                                               |                                                                                                      |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                   |                                             |                                               |                                                                                                      |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                   |                                             |                                               |                                                                                                      |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                   |                                             |                                               |                                                                                                      |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                   |                                             |                                               |                                                                                                      |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                   | i                                           |                                               |                                                                                                      |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                   | Factor <sup>(1)</sup>                       | Factor <sup>(1)</sup> Capacity <sup>(2)</sup> | Factor <sup>(1)</sup> (lb/1000 lb) Capacity <sup>(2)</sup> (lbs/hr) Rate (lbs/hr)  13.80 13.80 13.80 | Factor <sup>(1)</sup> (lb/1000 lb) Capacity <sup>(2)</sup> (lbs/hr) Rate (lbs/hr) (%)  13.80 99.90% 13.80 99.90% 13.80 99.90% | Factor <sup>(1)</sup> (lb/1000 lb) (lbs/hr) (lbs/ |

<sup>(1)</sup> Emission factor and pollution control efficiency (where applicable) selected per the discussion.

<sup>(2)</sup> Maximum capacity, in pounds of raw material per hour, from the 2005 revised submittal to address CAM applicability.

#### Emission Unit 11 - Steam Boiler #1

#### Discussion

- 1. Steam Boiler #1 is permitted to operate on natural gas or no. 2 fuel oil with a fuel sulfur content ≤ 0.05%.
- 2. The summary for this emision unit presents the worst-case emissions by pollutant. For details on each fuel, please refer to the tables below.

#### Emission Unit Potential-to-Emit Summary (tons/yr)

| Pollutant         | SB1      | Emission<br>Unit 11<br>Total |
|-------------------|----------|------------------------------|
| PM                | 5.98     | 5.98                         |
| PM <sub>10</sub>  | 4.17     | 4.17                         |
| PM <sub>2.5</sub> | 3.17     | 3.17                         |
| SO <sub>2</sub>   | 12.86    | 12.86                        |
| NO <sub>x</sub>   | 36.23    | 36.23                        |
| co                | 20.88    | 20.88                        |
| VOC               | 1.37     | 1.37                         |
| Lead              | 2.28E-03 | 2.28E-03                     |
| Single HAP(1)     |          |                              |
| Total HAPs        | 0.47     | 0.47                         |

<sup>(1)</sup> Total facility maximum single hap is chlorobenzene; souces that do not emit this HAP are not included.

# Equipment SB1 - 57.9 MMBtu/hr Steam Boiler #1 (Exhaust 003E001)

(Natural gas combustion)

| (Natural gas co   | Emission<br>Factor <sup>(1)</sup><br>(Ib/MMscf) | Max.<br>Capacity<br>(MMBtu/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency<br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|-------------------------------------------------|--------------------------------|------------------------------|------------------------------|--------------------------------------------|---------------------------------------------|
| PM                | 7.6                                             |                                | 0.43                         |                              | 0.43                                       | 1.89                                        |
| PM <sub>10</sub>  | 7.6                                             |                                | 0.43                         |                              | 0.43                                       | 1.89                                        |
| PM <sub>2.5</sub> | 7.6                                             |                                | 0.43                         |                              | 0.43                                       | 1.89                                        |
| SO <sub>2</sub>   | 0.60                                            |                                | 0.03                         |                              | 0.03                                       | 0.15                                        |
| NO <sub>x</sub>   | 100                                             |                                | 5.68                         |                              | 5.68                                       | 24.86                                       |
| co                | 84                                              |                                | 4.77                         |                              | 4.77                                       | 20.88                                       |
| VOC               | 5.50                                            |                                | 0.31                         |                              | 0.31                                       | 1.37                                        |
| Lead              | 5.00E-04                                        | [                              | 2.84E-05                     |                              | 2.84E-05                                   | 1.24E-04                                    |
| Single HAP        |                                                 |                                |                              |                              |                                            |                                             |
| Total HAPs        | 1.89                                            | 1                              | 0.11                         |                              | 0.11                                       | 0.47                                        |
| Arsenic           | 2.00E-04                                        | 1                              | 1.14E-05                     |                              | 1.14E-05                                   |                                             |
| Benzene           | 2.10E-03                                        | 1                              | 1.19E-04                     |                              | 1.19E-04                                   | 5.22E-04                                    |
| Beryllium         | 1.20E-05                                        | 57.9                           | 6.81E-07                     |                              | 6.81E-07                                   | 2.98E-06                                    |
| Cadmium           | 1.10E-03                                        | ] 37.9                         | 6.24E-05                     |                              | 6.24E-05                                   |                                             |
| Chromium          | 1.40E-03                                        | 1                              | 7.95E-05                     |                              | 7.95E-05                                   |                                             |
| Cobalt            | 8.40E-05                                        | 1                              | 4.77E-06                     |                              | 4.77E-06                                   |                                             |
| Dichlorobenzer    | 1.20E-03                                        | 1                              | 6.81E-05                     |                              | 6.81E-05                                   |                                             |
| Formeldahyde      | 7.50E-02                                        | 1                              | 4.26E-03                     |                              | 4.26E-03                                   |                                             |
| Hexane            | 1.80                                            | Ī                              | 0.10                         |                              | 0.10                                       |                                             |
| Manganese         | 3.80E-04                                        |                                | 2.16E-05                     |                              | 2.16E-05                                   |                                             |
| Mercury           | 2.60E-04                                        |                                | 1.48E-05                     |                              | 1.48E-05                                   |                                             |
| Naphthalene       | 6.10E-04                                        | .]                             | 3.46E-05                     |                              | 3.46E-05                                   | <del></del>                                 |
| Nickel            | 2.10E-03                                        | 3                              | 1.19E-04                     |                              | 1.19E-04                                   |                                             |
| POM               | 8.82E-05                                        | 5                              | 5.01E-06                     |                              | 5.01E-06                                   |                                             |
| Selenium          | 2.40E-05                                        | 5                              | 1.36E-06                     |                              | 1.36E-06                                   |                                             |
| Toluene           | 3.40E-03                                        |                                | 1.93E-04                     |                              | 1.93E-04                                   | 8.45E-04                                    |

<sup>(1)</sup> All emissinon factors from AP-42 Chapter 1.4 "Natural Gas Combustion," Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4 (07/98). A natural gas heating value of 1,020 Btu/cf may be used as a conversion factor.

### Emission Unit 11 - Steam Boiler #1

# Equipment SB1 - 57.9 MMBtu/hr Steam Boiler #1 (Exhaust 003E001)

(No. 2 fuel oil combustion)

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(lb/10³gal) | Max.<br>Capacity<br>(MMBtu/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency<br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|--------------------------------------------------|--------------------------------|------------------------------|------------------------------|--------------------------------------------|---------------------------------------------|
| PM                | 3.3                                              |                                | 1.36                         |                              | 1.36                                       | 5.98                                        |
| PM <sub>10</sub>  | 2.3                                              |                                | 0.95                         |                              | 0.95                                       | 4.17                                        |
| PM <sub>2.5</sub> | 1.8                                              |                                | 0.72                         |                              | 0.72                                       | 3.17                                        |
| SO <sub>2</sub>   | 7.1                                              |                                | 2.94                         |                              | 2.94                                       | 12.86                                       |
| NO <sub>x</sub>   | 20                                               |                                | 8.27                         |                              | 8.27                                       | 36.23                                       |
| co                | 5                                                |                                | 2.07                         |                              | 2.07                                       | 9.06                                        |
| VOC               | 0.2                                              |                                | 0.08                         |                              | 0.08                                       | 0.36                                        |
| Lead              | 1.26E-03                                         |                                | 5.21E-04                     |                              | 5.21E-04                                   | 2.28E-03                                    |
| Single HAP        |                                                  |                                |                              |                              |                                            |                                             |
| Total HAPs        | 0.05                                             |                                | 0.02                         |                              | 0.02                                       | 0.10                                        |
| Arsenic           | 5.60E-04                                         |                                | 2.32E-04                     |                              | 2.32E-04                                   | 1.01E-03                                    |
| Benzene           | 2.14E-04                                         |                                | 8.85E-05                     |                              | 8.85E-05                                   | 3.88E-04                                    |
| Beryllium         | 4.20E-04                                         | 57.9                           | 1.74E-04                     |                              | 1.74E-04                                   | 7.61E-04                                    |
| Cadmium           | 4.20E-04                                         |                                | 1.74E-04                     |                              | 1.74E-04                                   | 7.61E-04                                    |
| Chromium          | 4.20E-04                                         | [                              | 1.74E-04                     |                              | 1.74E-04                                   | 7.61E-04                                    |
| Ethyl benzene     | 6.36E-05                                         |                                | 2.63E-05                     |                              |                                            |                                             |
| Formeldahyde      | 3.30E-02                                         |                                | 0.01                         |                              | 0.01                                       | 0.06                                        |
| Manganese         | 8.40E-04                                         |                                | 3.47E-04                     |                              | 3.47E-04                                   | 1.52E-03                                    |
| Mercury           | 4.20E-04                                         |                                | 1.74E-04                     |                              | 1.74E-04                                   | 7.61E-04                                    |
| Naphthalene       | 1.13E-03                                         | [                              | 4.67E-04                     |                              | 4.67E-04                                   | 2.05E-03                                    |
| Nickel            | 4.20E-04                                         |                                | 1.74E-04                     |                              | 1.74E-04                                   | 7.61E-04                                    |
| POM               | 6.06E-05                                         |                                | 2.51E-05                     |                              | 2.51E-05                                   | 1.10E-04                                    |
| Selenium          | 2.10E-03                                         |                                | 8.69E-04                     |                              | 8.69E-04                                   | 3.80E-03                                    |
| Toluene           | 6.20E-03                                         |                                | 2.56E-03                     |                              | 2.56E-03                                   | 0.01                                        |
| Trichloroethane   | 6.20E-03                                         |                                | 2.56E-03                     |                              | 2.56E-03                                   | 0.01                                        |

<sup>(1)</sup> All emissinon factors from AP-42 Chapter 1.3 "Fuel Oil Combustion," Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4 (07/98). A no. 2 fuel oil heating value of 140 MMBtu/10<sup>3</sup> gal may be used as a conversion factor. Where applicable, emission factors use the highest permitted fuel sulfur content. Particulate emission factors include condensible particulates.

#### Emission Unit 12 - Steam Boiler #2

#### Discussion

- 1. Steam Boiler #2 is permitted to operate on natural gas or no. 2 fuel oil with a fuel sulfur content ≤ 0.05%.
- 2. The summary for this emision unit presents the worst-case emissions by pollutant. For details on each fuel, please refer to the tables below.

#### Emission Unit Potential-to-Emit Summary (tons/yr)

| Pollutant         | SB2      | Emission<br>Unit 12<br>Total |
|-------------------|----------|------------------------------|
| PM                | 4.27     | 4.27                         |
| PM <sub>10</sub>  | 2.98     | 2.98                         |
| PM <sub>2.5</sub> | 2.27     | 2.27                         |
| SO <sub>2</sub>   | 9.20     | 9.20                         |
| NO <sub>x</sub>   | 25.90    | 25.90                        |
| CO                | 14.93    | 14.93                        |
| VOC               | 0.98     | 0.98                         |
| Lead              | 1.63E-03 | 1.63E-03                     |
| Single HAP(1)     |          |                              |
| Total HAPs        | 0.34     | 0.34                         |

<sup>(1)</sup> Total facility maximum single hap is chlorobenzene; souces that do not emit this HAP are not included.

### Equipment SB2 - 41.4 MMBtu/hr Steam Boiler #2 (Exhaust 003E002)

(Natural gas combustion)

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(lb/MMscf) | Max.<br>Capacity<br>(MMBtu/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency<br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|-------------------------------------------------|--------------------------------|------------------------------|------------------------------|--------------------------------------------|---------------------------------------------|
| РМ                | 7.6                                             |                                | 0.31                         |                              | 0.31                                       | 1.35                                        |
| PM <sub>10</sub>  | 7.6                                             |                                | 0.31                         |                              | 0.31                                       | 1.35                                        |
| PM <sub>2.5</sub> | 7.6                                             |                                | 0.31                         |                              | 0.31                                       | 1.35                                        |
| SO <sub>2</sub>   | 0.60                                            |                                | 0.02                         |                              | 0.02                                       | 0.11                                        |
| NO <sub>x</sub>   | 100                                             |                                | 4.06                         |                              | 4.06                                       | 17.78                                       |
| СО                | 84                                              | [                              | 3.41                         |                              | 3.41                                       | 14.93                                       |
| VOC               | 5.50                                            | ĺ                              | 0.22                         |                              | 0.22                                       | 0.98                                        |
| Lead              | 5.00E-04                                        |                                | 2.03E-05                     |                              | 2.03E-05                                   | 8.89E-05                                    |
| Single HAP        |                                                 |                                |                              |                              |                                            |                                             |
| Total HAPs        | 1.89                                            |                                | 0.08                         |                              | 0.08                                       | 0.34                                        |
| Arsenic           | 2.00E-04                                        |                                | 8.12E-06                     |                              | 8.12E-06                                   | 3.56E-05                                    |
| Benzene           | 2.10E-03                                        |                                | 8.52E-05                     |                              | 8.52E-05                                   | 3.73E-04                                    |
| Beryllium         | 1.20E-05                                        | 41.4                           | 4.87E-07                     |                              | 4.87E-07                                   | 2.13E-06                                    |
| Cadmium           | 1.10E-03                                        | 7'.7                           | 4.46E-05                     |                              | 4.46E-05                                   | 1.96E-04                                    |
| Chromium          | 1.40E-03                                        |                                | 5.68E-05                     |                              | 5.68E-05                                   | 2.49E-04                                    |
| Cobalt            | 8.40E-05                                        | [                              | 3.41E-06                     |                              | 3.41E-06                                   | 1.49E-05                                    |
| Dichlorobenzer    | 1.20E-03                                        | [                              | 4.87E-05                     |                              | 4.87E-05                                   | 2.13E-04                                    |
| Formeldahyde      | 7.50E-02                                        |                                | 3.04E-03                     |                              | 3.04E-03                                   | 0.01                                        |
| Hexane            | 1.80                                            | -                              | 0.07                         |                              | 0.07                                       | 0.32                                        |
| Manganese         | 3.80E-04                                        |                                | 1.54E-05                     |                              | 1.54E-05                                   | 6.76E-05                                    |
| Mercury           | 2.60E-04                                        |                                | 1.06E-05                     |                              | 1.06E-05                                   | 4.62E-05                                    |
| Naphthalene       | 6.10E-04                                        |                                | 2.48E-05                     |                              | 2.48E-05                                   | 1.08E-04                                    |
| Nickel            | 2.10E-03                                        |                                | 8.52E-05                     |                              | 8.52E-05                                   | 3.73E-04                                    |
| POM               | 8.82E-05                                        |                                | 3.58E-06                     |                              | 3.58E-06                                   | 1.57E-05                                    |
| Selenium          | 2.40E-05                                        | Ī                              | 9.74E-07                     |                              | 9.74E-07                                   | 4.27E-06                                    |
| Toluene           | 3.40E-03                                        |                                | 1.38E-04                     |                              | 1.38E-04                                   | 6.04E-04                                    |

<sup>(1)</sup> All emissinon factors from AP-42 Chapter 1.4 "Natural Gas Combustion," Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4 (07/98). A natural gas heating value of 1,020 Btu/cf may be used as a conversion factor.

#### Emission Unit 12 - Steam Boiler #2

# Equipment SB2 - 41.4 MMBtu/hr Steam Boiler #2 (Exhaust 003E002)

(No. 2 fuel oil combustion)

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(Ib/10³gal) | Max.<br>Capacity<br>(MMBtu/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency<br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|--------------------------------------------------|--------------------------------|------------------------------|------------------------------|--------------------------------------------|---------------------------------------------|
| PM                | 3.3                                              |                                | 0.98                         |                              | 0.98                                       | 4.27                                        |
| PM <sub>10</sub>  | 2.3                                              |                                | 0.68                         |                              | 0.68                                       | 2.98                                        |
| PM <sub>2.5</sub> | 1.8                                              |                                | 0.52                         |                              | 0.52                                       | 2.27                                        |
| SO <sub>2</sub>   | 7.1                                              |                                | 2.10                         |                              | 2.10                                       | 9.20                                        |
| NO <sub>x</sub>   | 20                                               |                                | 5.91                         |                              | 5.91                                       | 25.90                                       |
| co                | 5                                                |                                | 1.48                         |                              | 1.48                                       | 6.48                                        |
| VOC               | 0.2                                              |                                | 0.06                         |                              | 0.06                                       | 0.26                                        |
| Lead              | 1.26E-03                                         | [                              | 3.73E-04                     |                              | 3.73E-04                                   | 1.63E-03                                    |
| Single HAP        |                                                  | [                              |                              |                              |                                            |                                             |
| Total HAPs        | 0.05                                             |                                | 0.02                         |                              | 0.02                                       | 0.07                                        |
| Arsenic           | 5.60E-04                                         | [                              | 1.66E-04                     |                              | 1.66E-04                                   | 7.25E-04                                    |
| Benzene           | 2.14E-04                                         |                                | 6.33E-05                     |                              | 6.33E-05                                   | 2.77E-04                                    |
| Beryllium         | 4.20E-04                                         | 41.4                           | 1.24E-04                     |                              | 1.24E-04                                   | 5.44E-04                                    |
| Cadmium           | 4.20E-04                                         |                                | 1.24E-04                     |                              | 1.24E-04                                   | 5.44E-04                                    |
| Chromium          | 4.20E-04                                         |                                | 1.24E-04                     |                              | 1.24E-04                                   | 5.44E-04                                    |
| Ethyl benzene     | 6.36E-05                                         |                                | 1.88E-05                     |                              |                                            |                                             |
| Formeldahyde      | 3.30E-02                                         | [                              | 9.76E-03                     |                              | 9.76E-03                                   | 0.04                                        |
| Manganese         | 8.40E-04                                         |                                | 2.48E-04                     |                              | 2.48E-04                                   | 1.09E-03                                    |
| Mercury           | 4.20E-04                                         |                                | 1.24E-04                     |                              | 1.24E-04                                   | 5.44E-04                                    |
| Naphthalene       | 1.13E-03                                         |                                | 3.34E-04                     |                              | 3.34E-04                                   | 1.46E-03                                    |
| Nickel            | 4.20E-04                                         |                                | 1.24E-04                     |                              | 1.24E-04                                   | 5.44E-04                                    |
| POM               | 6.06E-05                                         |                                | 1.79E-05                     |                              | 1.79E-05                                   | 7.85E-05                                    |
| Selenium          | 2.10E-03                                         | [                              | 6.21E-04                     |                              | 6.21E-04                                   | 2.72E-03                                    |
| Toluene           | 6.20E-03                                         | [                              | 1.83E-03                     |                              | 1.83E-03                                   | 8.03E-03                                    |
| Trichloroethane   | 6.20E-03                                         |                                | 1.83E-03                     |                              | 1.83E-03                                   | 8.03E-03                                    |

<sup>(1)</sup> All emissinon factors from AP-42 Chapter 1.3 "Fuel Oil Combustion," Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4 (07/98). A no. 2 fuel oil heating value of 140 MMBtu/10<sup>3</sup>gal may be used as a conversion factor. Where applicable, emission factors use the highest permitted fuel sulfur content. Particulate emission factors include condensible particulates.

#### **Emission Unit 13 - Born Oil Heater**

#### Discussion

- 1. The Born Oil Heater is permitted to operate on natural gas or no. 2 fuel oil with a fuel sulfur content ≤ 0.50%.
- 2. The summary for this emision unit presents the worst-case emissions by pollutant. For details on each fuel, please refer to the tables below.

#### Emission Unit Potential-to-Emit Summary (tons/yr)

| Pollutant         | BORN     | Emission<br>Unit 13<br>Total |  |
|-------------------|----------|------------------------------|--|
| PM                | 1.86     | 1.86                         |  |
| PM <sub>10</sub>  | 1.30     | 1.30                         |  |
| PM <sub>2.5</sub> | 0.99     | 0.99                         |  |
| SO <sub>2</sub>   | 39.98    | 39.98                        |  |
| NO <sub>x</sub>   | 11.26    | 11.26                        |  |
| CO                | 6.49     | 6.49                         |  |
| VOC               | 0.43     | 0.43                         |  |
| Lead              | 7.10E-04 | 7.10E-04                     |  |
| Single HAP(1)     |          |                              |  |
| Total HAPs        | 0.15     | 0.15                         |  |

<sup>(1)</sup> Total facility maximum single hap is chlorobenzene; souces that do not emit this HAP are not included.

# Equipment BORN - 18.0 MMBtu/hr Born T-66 Oil Heater (Exhaust 003E003) (Natural gas combustion)

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(lb/MMscf) | Max.<br>Capacity<br>(MMBtu/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency<br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|-------------------------------------------------|--------------------------------|------------------------------|------------------------------|--------------------------------------------|---------------------------------------------|
| PM                | 7.6                                             |                                | 0.13                         |                              | 0.13                                       | 0.59                                        |
| PM <sub>10</sub>  | 7.6                                             |                                | 0.13                         |                              | 0.13                                       |                                             |
| PM <sub>2.5</sub> | 7.6                                             |                                | 0.13                         |                              | 0.13                                       | 0.59                                        |
| SO <sub>2</sub>   | 0.60                                            |                                | 0.01                         |                              | 0.01                                       | 0.05                                        |
| NO <sub>x</sub>   | 100                                             |                                | 1.76                         |                              | 1.76                                       | 7.73                                        |
| CO                | 84                                              |                                | 1.48                         | -                            | 1.48                                       | 6.49                                        |
| VOC               | 5.50                                            |                                | 0.10                         |                              | 0.10                                       | 0.43                                        |
| Lead              | 5.00E-04                                        |                                | 8.82E-06                     |                              | 8.82E-06                                   | 3.86E-05                                    |
| Single HAP        |                                                 |                                |                              |                              |                                            |                                             |
| Total HAPs        | 1.89                                            |                                | 0.03                         |                              | 0.03                                       | 0.15                                        |
| Arsenic           | 2.00E-04                                        |                                | 3.53E-06                     |                              | 3.53E-06                                   | 1.55E-05                                    |
| Benzene           | 2.10E-03                                        |                                | 3.71E-05                     |                              | 3.71E-05                                   | 1.62E-04                                    |
| Beryllium         | 1.20E-05                                        | 18.0                           | 2.12E-07                     |                              | 2.12E-07                                   | 9.28E-07                                    |
| Cadmium           | 1.10E-03                                        | 16.0                           | 1.94E-05                     |                              | 1.94E-05                                   | 8.50E-05                                    |
| Chromium          | 1.40E-03                                        |                                | 2.47E-05                     |                              | 2.47E-05                                   | 1.08E-04                                    |
| Cobalt            | 8.40E-05                                        |                                | 1.48E-06                     |                              | 1.48E-06                                   | 6.49E-06                                    |
| Dichlorobenzer    | 1.20E-03                                        |                                | 2.12E-05                     |                              | 2.12E-05                                   | 9.28E-05                                    |
| Formeldahyde      | 7.50E-02                                        |                                | 1.32E-03                     |                              | 1.32E-03                                   | 5.80E-03                                    |
| Hexane            | 1.80                                            |                                | 0.03                         |                              | 0.03                                       | 0.14                                        |
| Manganese         | 3.80E-04                                        |                                | 6.71E-06                     |                              | 6.71E-06                                   | 2.94E-05                                    |
| Mercury           | 2.60E-04                                        |                                | 4.59E-06                     |                              | 4.59E-06                                   | 2.01E-05                                    |
| Naphthalene       | 6.10E-04                                        |                                | 1.08E-05                     |                              | 1.08E-05                                   | 4.71E-05                                    |
| Nickel            | 2.10E-03                                        |                                | 3.71E-05                     |                              | 3.71E-05                                   | 1.62E-04                                    |
| POM               | 8.82E-05                                        |                                | 1.56E-06                     |                              | 1.56E-06                                   | 6.82E-06                                    |
| Selenium          | 2.40E-05                                        |                                | 4.24E-07                     |                              | 4.24E-07                                   | 1.86E-06                                    |
| Toluene           | 3.40E-03                                        |                                | 6.00E-05                     |                              | 6.00E-05                                   | 2.63E-04                                    |

<sup>(1)</sup> All emissinon factors from AP-42 Chapter 1.4 "Natural Gas Combustion," Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4 (07/98). A natural gas heating value of 1,020 Btu/cf may be used as a conversion factor.

### **Emission Unit 13 - Born Oil Heater**

## Equipment BORN - 18 MMBtu/hr Born T-66 Oil Heater (Exhaust 003E003)

(No. 2 fuel oil combustion)

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(lb/10 <sup>3</sup> gal) | Max.<br>Capacity<br>(MMBtu/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency<br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|---------------------------------------------------------------|--------------------------------|------------------------------|------------------------------|--------------------------------------------|---------------------------------------------|
| PM                | 3.3                                                           |                                | 0.42                         |                              | 0.42                                       | 1.86                                        |
| PM <sub>10</sub>  | 2.3                                                           |                                | 0.30                         |                              | 0.30                                       | 1.30                                        |
| PM <sub>2.5</sub> | 1.8                                                           |                                | 0.23                         |                              | 0.23                                       | 0.99                                        |
| SO <sub>2</sub>   | 71.0                                                          |                                | 9.13                         |                              | 9.13                                       | 39.98                                       |
| NO <sub>x</sub>   | 20                                                            |                                | 2.57                         |                              | 2.57                                       | 11.26                                       |
| CO                | 5                                                             |                                | 0.64                         |                              | 0.64                                       | 2.82                                        |
| VOC               | 0.2                                                           |                                | 0.03                         |                              | 0.03                                       | 0.11                                        |
| Lead              | 1.26E-03                                                      |                                | 1.62E-04                     |                              | 1.62E-04                                   | 7.10E-04                                    |
| Single HAP        |                                                               |                                |                              |                              |                                            |                                             |
| Total HAPs        | 0.05                                                          |                                | 6.91E-03                     |                              | 6.91E-03                                   | 0.03                                        |
| Arsenic           | 5.60E-04                                                      | [                              | 7.20E-05                     |                              | 7.20E-05                                   | 3.15E-04                                    |
| Benzene           | 2.14E-04                                                      |                                | 2.75E-05                     | )                            | 2.75E-05                                   | 1.21E-04                                    |
| Beryllium         | 4.20E-04                                                      | 18.0                           | 5.40E-05                     |                              | 5.40E-05                                   | 2.37E-04                                    |
| Cadmium           | 4.20E-04                                                      |                                | 5.40E-05                     |                              | 5.40E-05                                   | 2.37E-04                                    |
| Chromium          | 4.20E-04                                                      |                                | 5.40E-05                     |                              | 5.40E-05                                   | 2.37E-04                                    |
| Ethyl benzene     | 6.36E-05                                                      |                                | 8.18E-06                     |                              |                                            |                                             |
| Formeldahyde      | 3.30E-02                                                      |                                | 4.24E-03                     |                              | 4.24E-03                                   | 0.02                                        |
| Manganese         | 8.40E-04                                                      |                                | 1.08E-04                     | - ve ser                     | 1.08E-04                                   | 4.73E-04                                    |
| Mercury           | 4.20E-04                                                      |                                | 5.40E-05                     |                              | 5.40E-05                                   | 2.37E-04                                    |
| Naphthalene       | 1.13E-03                                                      |                                | 1.45E-04                     |                              | 1.45E-04                                   | 6.36E-04                                    |
| Nickel            | 4.20E-04                                                      |                                | 5.40E-05                     |                              | 5.40E-05                                   | 2.37E-04                                    |
| POM               | 6.06E-05                                                      |                                | 7.79E-06                     |                              | 7.79E-06                                   | 3.41E-05                                    |
| Selenium          | 2.10E-03                                                      | [                              | 2.70E-04                     |                              | 2.70E-04                                   | 1.18E-03                                    |
| Toluene           | 6.20E-03                                                      |                                | 7.97E-04                     |                              | 7.97E-04                                   | 3.49E-03                                    |
| Trichloroethane   | 6.20E-03                                                      |                                | 7.97E-04                     |                              | 7.97E-04                                   | 3.49E-03                                    |

<sup>(1)</sup> All emissinon factors from AP-42 Chapter 1.3 "Fuel Oil Combustion," Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4 (07/98). A no. 2 fuel oil heating value of 140 MMBtu/10<sup>3</sup>gal may be used as a conversion factor. Where applicable, emission factors use the highest permitted fuel sulfur content. Particulate emission factors include condensible particulates.

#### **Emission Unit 14 - Carotek Oil Heater**

#### Discussion

- 1. The Carotek Oil Heater is permitted to operate on natural gas or no. 2 fuel oil with a fuel sulfur content ≤ 0.50%. Existing permit conditions limit no. 2 fuel oil consumption to no more than 1,098, 950 gallons per year. At a fuel oil heating value of 140,000 Btu/gal, this is an annualized heat input of approximately 17.6 MMbtu/hr.
- 2. The summary for this emision unit presents the worst-case emissions by pollutant. For details on each fuel, please refer to the tables below.

#### Emission Unit Potential-to-Emit Summary (tons/yr)

| Pollutant                 | CARO     | Emission<br>Unit 14<br>Total |
|---------------------------|----------|------------------------------|
| РМ                        | 1.82     | 1.82                         |
| PM <sub>10</sub>          | 1.27     | 1.27                         |
| PM <sub>2.5</sub>         | 0.96     | 0.96                         |
| SO <sub>2</sub>           | 39.09    | 39.09                        |
| NO <sub>x</sub>           | 12.02    | 12.02                        |
| CO                        | 10.10    | 10.10                        |
| VOC                       | 0.66     | 0.66                         |
| Lead                      | 6.94E-04 | 6.94E-04                     |
| Single HAP <sup>(1)</sup> |          |                              |
| Total HAPs                | 0.23     | 0.23                         |

<sup>(1)</sup> Total facility maximum single hap is chlorobenzene; souces that do not emit this HAP are not included.

## Equipment CARO - 28.0 MMBtu/hr Carotek Oil Heater (Exhaust 003E004)

(Natural gas combustion)

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(lb/MMscf) | Max.<br>Capacity<br>(MMBtu/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency<br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|-------------------------------------------------|--------------------------------|------------------------------|------------------------------|--------------------------------------------|---------------------------------------------|
| PM                | 7.6                                             |                                | 0.21                         |                              | 0.21                                       | 0.91                                        |
| PM <sub>10</sub>  | 7.6                                             |                                | 0.21                         |                              | 0.21                                       | 0.91                                        |
| PM <sub>2.5</sub> | 7.6                                             |                                | 0.21                         |                              | 0.21                                       | 0.91                                        |
| SO <sub>2</sub>   | 0.60                                            |                                | 0.02                         |                              | 0.02                                       | 0.07                                        |
| NO <sub>x</sub>   | 100                                             |                                | 2.75                         |                              | 2.75                                       | 12.02                                       |
| CO                | 84                                              |                                | 2.31                         |                              | 2.31                                       | 10.10                                       |
| VOC               | 5.50                                            |                                | 0.15                         |                              | 0.15                                       | 0.66                                        |
| Lead              | 5.00E-04                                        |                                | 1.37E-05                     |                              | 1.37E-05                                   | 6.01E-05                                    |
| Single HAP        |                                                 |                                |                              |                              |                                            |                                             |
| Total HAPs        | 1.89                                            |                                | 0.05                         |                              | 0.05                                       | 0.23                                        |
| Arsenic           | 2.00E-04                                        |                                | 5.49E-06                     |                              | 5.49E-06                                   | 2.40E-05                                    |
| Benzene           | 2.10E-03                                        |                                | 5.76E-05                     |                              | 5.76E-05                                   | 2.52E-04                                    |
| Beryllium         | 1.20E-05                                        | 28.0                           | 3.29E-07                     |                              | 3.29E-07                                   | 1.44E-06                                    |
| Cadmium           | 1.10E-03                                        | 20.0                           | 3.02E-05                     |                              | 3.02E-05                                   | 1.32E-04                                    |
| Chromium          | 1.40E-03                                        |                                | 3.84E-05                     |                              | 3.84E-05                                   | 1.68E-04                                    |
| Cobalt            | 8.40E-05                                        |                                | 2.31E-06                     |                              | 2.31E-06                                   | 1.01E-05                                    |
| Dichlorobenzer    | 1.20E-03                                        |                                | 3.29E-05                     |                              | 3.29E-05                                   | 1.44E-04                                    |
| Formeldahyde      | 7.50E-02                                        |                                | 2.06E-03                     |                              | 2.06E-03                                   | 9.02E-03                                    |
| Hexane            | 1.80                                            |                                | 0.05                         |                              | 0.05                                       | 0.22                                        |
| Manganese         | 3.80E-04                                        |                                | 1.04E-05                     |                              | 1.04E-05                                   | 4.57E-05                                    |
| Mercury           | 2.60E-04                                        | Ī                              | 7.14E-06                     |                              | 7.14E-06                                   | 3.13E-05                                    |
| Naphthalene       | 6.10E-04                                        |                                | 1.67E-05                     |                              | 1.67E-05                                   | 7.33E-05                                    |
| Nickel            | 2.10E-03                                        |                                | 5.76E-05                     |                              | 5.76E-05                                   | 2.52E-04                                    |
| POM               | 8.82E-05                                        |                                | 2.42E-06                     |                              | 2.42E-06                                   | 1.06E-05                                    |
| Selenium          | 2.40E-05                                        |                                | 6.59E-07                     |                              | 6.59E-07                                   | 2.89E-06                                    |
| Toluene           | 3.40E-03                                        |                                | 9.33E-05                     |                              | 9.33E-05                                   | 4.09E-04                                    |

<sup>(1)</sup> All emissinon factors from AP-42 Chapter 1.4 "Natural Gas Combustion," Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4 (07/98). A natural gas heating value of 1,020 Btu/cf may be used as a conversion factor.

### **Emission Unit 14 - Carotek Oil Heater**

# Equipment CARO - 28.0 MMBtu/hr Carotek Oil Heater (Exhaust 003E004) (No. 2 fuel oil combustion)

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(lb/10³gal) | Max.<br>Capacity<br>(MMBtu/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency<br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate <sup>(2)</sup><br>(tons/yr) |
|-------------------|--------------------------------------------------|--------------------------------|------------------------------|------------------------------|--------------------------------------------|------------------------------------------------------------|
| РМ                | 3.3                                              |                                | 0.66                         |                              | 0.66                                       | 1.82                                                       |
| PM <sub>10</sub>  | 2.3                                              |                                | 0.46                         |                              | 0.46                                       | 1.27                                                       |
| PM <sub>2.5</sub> | 1.8                                              | Ε                              | 0.35                         |                              | 0.35                                       | 0.96                                                       |
| SO <sub>2</sub>   | 71.0                                             |                                | 14.20                        |                              | 14.20                                      | 39.09                                                      |
| NO <sub>x</sub>   | 20                                               |                                | 4.00                         |                              | 4.00                                       | 11.01                                                      |
| co                | 5                                                |                                | 1.00                         |                              | 1.00                                       | 2.75                                                       |
| VOC               | 0.2                                              |                                | 0.04                         |                              | 0.04                                       | 0.11                                                       |
| Lead              | 1.26E-03                                         |                                | 2.52E-04                     |                              | 2.52E-04                                   | 6.94E-04                                                   |
| Single HAP        |                                                  |                                |                              |                              |                                            |                                                            |
| Total HAPs        | 0.05                                             | [                              | 0.01                         |                              | 0.01                                       | 0.03                                                       |
| Arsenic           | 5.60E-04                                         |                                | 1.12E-04                     |                              | 1.12E-04                                   | 3.08E-04                                                   |
| Benzene           | 2.14E-04                                         | [                              | 4.28E-05                     |                              | 4.28E-05                                   | 1.18E-04                                                   |
| Beryllium         | 4.20E-04                                         | 28.0                           | 8.40E-05                     |                              | 8.40E-05                                   | 2.31E-04                                                   |
| Cadmium           | 4.20E-04                                         |                                | 8.40E-05                     |                              | 8.40E-05                                   | 2.31E-04                                                   |
| Chromium          | 4.20E-04                                         | F                              | 8.40E-05                     |                              | 8.40E-05                                   | 2.31E-04                                                   |
| Ethyl benzene     | 6.36E-05                                         |                                | 1.27E-05                     |                              | 1.27E-05                                   | 3.50E-05                                                   |
| Formeldahyde      | 3.30E-02                                         | [                              | 6.60E-03                     |                              | 6.60E-03                                   | 0.02                                                       |
| Manganese         | 8.40E-04                                         |                                | 1.68E-04                     |                              | 1.68E-04                                   | 4.63E-04                                                   |
| Mercury           | 4.20E-04                                         |                                | 8.40E-05                     |                              | 8.40E-05                                   | 2.31E-04                                                   |
| Naphthalene       | 1.13E-03                                         |                                | 2.26E-04                     |                              | 2.26E-04                                   | 6.22E-04                                                   |
| Nickel            | 4.20E-04                                         |                                | 8.40E-05                     |                              | 8.40E-05                                   | 2.31E-04                                                   |
| POM               | 6.06E-05                                         |                                | 1.21E-05                     |                              | 1.21E-05                                   | 3.34E-05                                                   |
| Selenium          | 2.10E-03                                         |                                | 4.20E-04                     |                              | 4.20E-04                                   | 1.16E-03                                                   |
| Toluene           | 6.20E-03                                         |                                | 1.24E-03                     |                              | 1.24E-03                                   | 3.41E-03                                                   |
| Trichloroethane   | 6.20E-03                                         |                                | 1.24E-03                     |                              | 1.24E-03                                   | 3.41E-03                                                   |

<sup>(1)</sup> All emissinon factors from AP-42 Chapter 1.3 "Fuel Oil Combustion," Tables 1.4-1, 1.4-2, 1.4-3, and 1.4-4 (07/98). A no. 2 fuel oil heating value of 140 MMBtu/10<sup>3</sup>gal may be used as a conversion factor. Where applicable, emission factors use the highest permitted fuel sulfur content. Particulate emission factors include condensible particulates.

<sup>(2)</sup> Controlled annual emission rate reflects the existing permit limit of 1,098,950 gallons per year.

#### Discussion

- 1. For emissions calculations for the G3 Coater 1 (G3CG1) and G3 Oven (G3C), all emissions are assumed to occur in the first zone of G3C (Exhaust ID 026E010). Please refer to the original calculations submitted with the G3 permit application for additional details. G3C is electric, and therefore no fuel combustion emissions will occur.
- 2. The G3 Coater 2 unit (G3GC2) has not yet been installed. 3M will address emissions for the unit at the time of its installation.
- 3. The uncontrolled particulate emission factor of [CONFIDENTIAL] pounds of particulates per pound of raw material (lb/lb RM) is derived based on a controlled test result of [CONFIDENTIAL] lbs PM/1,000 lbs RM, from the D-3 Edge Trim Grinder Cyclone test performed at 3M Decatur on July 25-26, 1989, back-calculated based on a cyclone control efficiency
- 4. The uncontrolled particulate emission factor of [CONFIDENTIAL] lb/lb RM is derived based on a controlled test result of [CONFIDENTIAL] lbs PM/1,000 lbs RM, from the D-3 Feed Cyclone Test performed at 3M Decatur on July 25-26, 198, back-calculated based on a cyclone control efficiency of 80%.
- 5. The uncontrolled particulate emission factor of [CONFIDENTIAL] lb/lb RM is derived based on a controlled test result of [CONFIDENTIAL] lbs PM/1,000 lbs RM, from the D-3 Floor Scrap Grinder Cyclone Test performed at 3M Decatur on July 25-26, 198, back-calculated based on a cyclone control efficiency of 80%.
- 6. The uncontrolled particulate emission factor of [CONFIDENTIAL] lb/lb RM is derived based on the average of the controlled test results of [CONFIDENTIAL] lbs PM/1,000 lbs RM and [CONFIDENTIAL] lbs PM/1,000 lbs RM, respectively from the D-3 Floor Scrap Silo Cyclone Test and the D-3 Edge Trim Silo Cyclone Test, both performed at 3M Decatur on July 25-26, 1989, and back-calculated based on a cyclone control efficiency of 80%
- 7. The G3 Die Casting Wheel (Equipment ID G3CW) is [CONFIDENTIAL]. The maximum throughput for G3CW is [CONFIDENTIAL] lbs/hr, and therefore, [CONFIDENTIAL]. This maximum, [CONFIDENTIAL] lb/hr throughput is [CONFIDENTIAL]. The emission factor for the G3CW unit, itself--as stated in the G3 permit amendment application--originates from testing performed on April 8, 1992 at the 3M Cottage Grove facility. See the emission calculations for details.
- 8. The maximum throughput for the Floor Scrap and Edge Trim grinders, the associated airveying equipment, and the receipient reclaim silos, assumes the maximum throughput rate for [CONFIDENTIAL], and assuming an equal division of scrap between: [CONFIDENTIAL]. Emissions from the grinders would result from airveying of the material; would-be emissions are controlled by a baghouse.
- 9. The maxmium throughput for all G3 Pellet Silos, operated simultaneously, from the G3 operating permit application.

Emission Unit Potential-to-Emit Summary (tons/yr)

| Pollutant                 | G3CG1<br>G3C | G3GC2 | G3ASP1<br>G3ASP2 | G3XT1<br>G3XT2<br>G3XT3<br>G3XT4 | G3H1<br>G3H2<br>G3H3<br>G3D | G3FSGR1<br>G3FSGR2<br>G3FSGR3<br>G3FSGR4<br>G3FS | G3ETGR1<br>G3ETGR2<br>G3ETGR3<br>G3ET | G3TL<br>&<br>G3BL | G3CW | G3FSILO1<br>G3FSILO2 | G3VSILO1<br>G3VSILO2<br>G3VSILO3<br>G3VSILO4<br>G3VSILO5 | G3 Mix<br>Room | Emission<br>Unit 15<br>Total |
|---------------------------|--------------|-------|------------------|----------------------------------|-----------------------------|--------------------------------------------------|---------------------------------------|-------------------|------|----------------------|----------------------------------------------------------|----------------|------------------------------|
| PM                        |              | N/A   | 0.02             |                                  | 0.02                        | 0.04                                             | 0.02                                  | 0.01              | 5.40 | N/A                  | 0.03                                                     |                | 5.52                         |
| PM <sub>10</sub>          |              | N/A   | 0.02             |                                  | 0.02                        | 0.04                                             | 0.02                                  | 0.01              | 5.40 | N/A                  | 0.03                                                     |                | 5.52                         |
| PM <sub>2.5</sub>         |              | N/A   | 0.02             |                                  | 0.02                        | 0.04                                             | 0.02                                  | 0.01              | 5.40 | N/A                  |                                                          |                | 5.52                         |
| SO <sub>2</sub>           |              | N/A   |                  |                                  |                             |                                                  |                                       |                   |      | N/A                  |                                                          |                | 0.02                         |
| $NO_x$                    |              | N/A   |                  |                                  |                             |                                                  |                                       |                   |      | N/A                  |                                                          |                |                              |
| co                        |              | N/A   |                  |                                  |                             |                                                  |                                       |                   |      | N/A                  |                                                          |                |                              |
| VOC                       | 8.76         | N/A   |                  | 37.56                            |                             |                                                  |                                       |                   |      | N/A                  |                                                          | 0.01           | 46.22                        |
| Lead                      |              | N/A   |                  |                                  |                             |                                                  |                                       |                   |      | N/A<br>N/A           |                                                          | 0.01           | 46.32                        |
| Single HAP <sup>(1)</sup> |              | N/A   |                  | 35.81                            |                             |                                                  |                                       |                   |      |                      |                                                          |                |                              |
| Total HAPs                | 11.60        |       |                  | 36.79                            |                             |                                                  |                                       |                   |      | N/A                  |                                                          |                | 35.81                        |
| (1) Total facility may    |              |       |                  | 36.79                            |                             |                                                  |                                       |                   |      | N/A                  |                                                          | 0.01           | 48.40                        |

<sup>(1)</sup> Total facility maximum single hap is chlorobenzene; souces that do not emit this HAP are not included.

## Equipment G3CG1 - G3 Coater 1 (Exhaust 026E005)

(Nearly all emissions from coating are expected to occur as the product enters the G3 Oven; emission calculations assume all G3G1 or G3C emissions occur in the first zone of the G3 Oven, Exhaust ID 026E010)

## Equipment G3CG2 - G3 Coater 2 (Exhaust 026E019)

(The G3 Coater 2 unit has not yet been installed. 3M will address emissions for the unit at the time of its installation.)

## Equipment G3C - G3 Oven (Exhausts 026E010, 011, 012, 013, 014, 015, 016, 027, 028)

|                     |                                                | <u>.</u>                                    |                              | ,, -                         | 12, 010, 01                                | ., ,                                        |
|---------------------|------------------------------------------------|---------------------------------------------|------------------------------|------------------------------|--------------------------------------------|---------------------------------------------|
| Pollutant           | Emission<br>Factor <sup>(1)</sup><br>(lbs/gal) | Max.<br>Capacity <sup>(2)</sup><br>(gal/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency<br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
| PM                  |                                                |                                             |                              |                              |                                            |                                             |
| PM <sub>10</sub>    |                                                |                                             |                              |                              |                                            |                                             |
| PM <sub>2,5</sub>   |                                                |                                             |                              |                              |                                            |                                             |
| SO <sub>2</sub>     |                                                |                                             |                              |                              |                                            |                                             |
| NO <sub>x</sub>     |                                                |                                             |                              |                              |                                            |                                             |
| CO                  |                                                |                                             |                              |                              |                                            |                                             |
| VOC                 |                                                |                                             | 2.00                         |                              | 2.00                                       | 8.76                                        |
| Lead                |                                                |                                             |                              |                              |                                            |                                             |
| Single HAP          |                                                |                                             | 1.09                         |                              | 1.09                                       | 4.76                                        |
| Total HAPs          |                                                |                                             | 2.65                         |                              | 2.65                                       | 11.60                                       |
| Acrylonitrile       |                                                |                                             | 0.02                         |                              | 0.02                                       | 0.09                                        |
| Ethyl acrylate      |                                                |                                             | 0.08                         |                              | 0.08                                       | 0.37                                        |
| Ethylene Glyco      |                                                |                                             | 0.05                         |                              | 0.05                                       | 0.21                                        |
| Ethylene Imine      |                                                |                                             | 9.45E-09                     |                              | 9.45E-09                                   | 4.14E-08                                    |
| Formaldehyde        |                                                |                                             | 0.36                         |                              | 0.36                                       | 1.57                                        |
| Hexane              |                                                |                                             | 7.25E-04                     |                              | 7.25E-04                                   | 3.18E-03                                    |
| Methanol            |                                                |                                             | 0.72                         |                              | 0.72                                       | 3.14                                        |
| MEK                 |                                                |                                             | 0.12                         |                              | 0.12                                       | 0.55                                        |
| MMA                 |                                                |                                             | 0.03                         |                              | 0.03                                       | 0.12                                        |
| Triethylamine       |                                                |                                             | 0.18                         |                              | 0.18                                       | 0.79                                        |
| Vinylidene CI       |                                                |                                             | 1.09                         |                              | 1.09                                       | 4.76                                        |
| (1) Worst-case emis | sion footors from                              |                                             |                              |                              |                                            | 1.70                                        |

<sup>(1)</sup> Worst-case emission factors from a composite of all coatings, back-calculated based on the uncontrolled emission rate and the listed maximum capacity.

<sup>(2)</sup> Maximum coating capacity, from the original G3 permit application submitted on December 22, 2006.

### G3 Feed Hopper/Aspirators (Exhaust 026E007)

(G3ASP1 - G3 Feed Hopper/Aspirator 1; G3ASP2 - G3 Feed Hopper/Aspirator 2)

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(lbs/lb RM) | Max.<br>Capacity <sup>(2)</sup><br>(lbs/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency <sup>(3)</sup><br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|--------------------------------------------------|---------------------------------------------|------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|
| PM                |                                                  |                                             | 0.40                         | 99.0%                                       | 4.00E-03                                   | 0.02                                        |
| PM <sub>10</sub>  |                                                  |                                             | 0.40                         | 99.0%                                       | 4.00E-03                                   | 0.02                                        |
| PM <sub>2.5</sub> |                                                  |                                             | 0.40                         | 99.0%                                       | 4.00E-03                                   | 0.02                                        |
| SO <sub>2</sub>   |                                                  |                                             |                              |                                             |                                            |                                             |
| NO <sub>x</sub>   |                                                  |                                             |                              |                                             |                                            |                                             |
| co                |                                                  |                                             |                              |                                             |                                            |                                             |
| VOC               |                                                  |                                             |                              |                                             |                                            |                                             |
| Lead              |                                                  |                                             |                              |                                             |                                            |                                             |
| Single HAP        |                                                  |                                             |                              | ~~~                                         |                                            |                                             |
| Total HAPs        |                                                  |                                             |                              |                                             |                                            |                                             |

<sup>(1)</sup> Emission factor based on the 3M Decatur D-3 Feed Cyclone Test, July 25-26, 1989. See discussion for details.

<sup>(2)</sup> Maximum capacity is for the total of the listed equipment; assuming [CONFIDENTIAL].

<sup>(3)</sup> Control efficiency for the BH15 baghouse, from the submitted G3 calculations.

### G3 Extruders (Exhaust 026E007)

(G3XT1 - G3 Extruder 1; G3XT2 - G3 Extruder 2; G3XT3 - G3 Extruder 3; G3XT4 - G3 Extruder 4)

| Pollutant                 | Emission<br>Factor <sup>(1)</sup><br>(lbs/lb RM) | Max.<br>Capacity<br>(lbs/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency<br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|---------------------------|--------------------------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------------------|---------------------------------------------|
| PM                        |                                                  |                              |                              |                              |                                            |                                             |
| PM <sub>10</sub>          |                                                  |                              |                              |                              |                                            |                                             |
| PM <sub>2.5</sub>         |                                                  |                              |                              |                              |                                            |                                             |
| SO <sub>2</sub>           |                                                  |                              |                              |                              |                                            |                                             |
| NO <sub>x</sub>           |                                                  |                              |                              |                              |                                            |                                             |
| co                        |                                                  |                              |                              |                              |                                            |                                             |
| VOC                       |                                                  |                              | 8.58                         |                              | 8.58                                       | 37.56                                       |
| Lead                      |                                                  |                              |                              |                              |                                            |                                             |
| Single HAP <sup>(2)</sup> |                                                  |                              | 8.18                         | ~~~                          | 8.18                                       | 35.81                                       |
| Total HAPs                |                                                  |                              | 8.40                         |                              | 8.40                                       | 36.79                                       |
| Acetaldehyde              |                                                  |                              | 0.12                         |                              | 0.12                                       | 0.55                                        |
| Chlorobenzene             |                                                  |                              | 8.18                         |                              | 8.18                                       | 35.81                                       |
| Methanol                  |                                                  |                              | 0.05                         |                              | 0.05                                       | 0.22                                        |
| Methylene CI              |                                                  |                              | 0.02                         |                              | 0.02                                       | 0.09                                        |
| Phenol                    |                                                  |                              | 0.04                         |                              | 0.04                                       | 0.18                                        |
| Toluene                   |                                                  |                              | 0.05                         |                              | 0.05                                       | 0.22                                        |

<sup>(1)</sup> Worst-case emissions factors from the G3 permit amendment application, citing 3M Greenville stack testing and the comparison of different possible products. Total HAPs is based on worst-case product and may not reflect the sum of all worst-case factors. Please refer to the original application for details.

<sup>(2)</sup> Maximum single HAP is chlorobenzene; this is not addivite with the speciated pollutants identified in this table.

## G3 Pellet Dryer & Resin Hoppers (Exhaust 026E007)

(G3D - G3 Pellet Dryer; G3H1 - Resin Charging Hopper 1; G3H2 - Resin Charging Hopper 2; G3H3 - Resin Charging Hopper 3;

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(lbs/lb RM) | Max.<br>Capacity <sup>(2)</sup><br>(Ibs/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency <sup>(3)</sup><br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|--------------------------------------------------|---------------------------------------------|------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|
| PM                |                                                  |                                             | 0.40                         | 99.0%                                       | 4.00E-03                                   | 0.02                                        |
| PM <sub>10</sub>  |                                                  |                                             | 0.40                         | 99.0%                                       | 4.00E-03                                   | 0.02                                        |
| PM <sub>2,5</sub> |                                                  |                                             | 0.40                         | 99.0%                                       | 4.00E-03                                   | 0.02                                        |
| SO <sub>2</sub>   |                                                  |                                             |                              |                                             |                                            |                                             |
| NO <sub>x</sub>   |                                                  |                                             |                              |                                             |                                            |                                             |
| CO                |                                                  |                                             |                              |                                             |                                            |                                             |
| VOC               |                                                  |                                             |                              |                                             |                                            |                                             |
| Lead              |                                                  |                                             |                              |                                             |                                            |                                             |
| Single HAP        |                                                  |                                             |                              |                                             |                                            |                                             |
| Total HAPs        |                                                  |                                             |                              |                                             |                                            |                                             |

<sup>(1)</sup> Emission factor based on the 3M Decatur D-3 Feed Cyclone Test, July 25-26, 1989. See discussion for details.

#### G3 Floor Scrap Grinders & Airveying (Exhaust 026E006)

(G3FSGR1 - G3 Floor Scrap Grinder 1; G3FSGR2 - G3 Floor Scrap Grinder 2; G3FSGR3 - G3 Floor Scrap Grinder 3; G3FSGR4 - G3 Floor Scrap Grinder 4;

G4FS - G3 Floor Scrap Airveying)

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(lbs/lb RM) | Max.<br>Capacity <sup>(2)</sup><br>(lbs/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency <sup>(3)</sup><br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|--------------------------------------------------|---------------------------------------------|------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|
| PM                |                                                  |                                             | 0.85                         | 99.0%                                       | 8.48E-03                                   | 0.04                                        |
| PM <sub>10</sub>  |                                                  |                                             | 0.85                         | 99.0%                                       | 8.48E-03                                   | 0.04                                        |
| PM <sub>2.5</sub> |                                                  |                                             | 0.85                         | 99.0%                                       | 8.48E-03                                   | 0.04                                        |
| SO <sub>2</sub>   |                                                  |                                             |                              |                                             |                                            |                                             |
| NO <sub>x</sub>   |                                                  |                                             |                              |                                             |                                            |                                             |
| СО                |                                                  |                                             |                              |                                             |                                            |                                             |
| voc               |                                                  |                                             |                              |                                             |                                            |                                             |
| Lead              |                                                  |                                             |                              |                                             |                                            |                                             |
| Single HAP        |                                                  |                                             |                              |                                             |                                            |                                             |
| Total HAPs        |                                                  |                                             |                              |                                             |                                            |                                             |

<sup>(1)</sup> Emission factor based on the 3M Decatur D-3 Floor Scrap Grinder Cyclone Test, July 25-26, 1989. See discussion for details.

<sup>(2)</sup> Maximum capacity is for the total of the listed equipment; assuming [CONFIDENTIAL].

<sup>(3)</sup> Control efficiency for the BH15 baghouse, from the submitted G3 calculations.

<sup>(2)</sup> Maximum capacity is for the total of the listed equipment, derived as described in the discussion section.

<sup>(3)</sup> Control efficiency for the BH14 baghouse, from the submitted G3 calculations.

3M Greenville Film - Greenville, SC Title V Air Permit Renewal Application

#### Emission Unit 15 - G3 Film Line

### G3 Edge Trim Grinders & Airveying (Exhaust 026E006)

(G3FSGR1 - G3 Floor Scrap Grinder 1; G3FSGR2 - G3 Floor Scrap Grinder 2; G3FSGR3 - G3 Floor Scrap Grinder 3; G3FSGR4 - G3 Floor Scrap Grinder 4;

G4FS - G3 Floor Scrap Airveving)

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(lbs/lb RM) | Max.<br>Capacity <sup>(2)</sup><br>(lbs/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency <sup>(3)</sup><br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|--------------------------------------------------|---------------------------------------------|------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|
| PM                |                                                  |                                             | 0.50                         | 99.0%                                       | 4.96E-03                                   | 0.02                                        |
| PM <sub>10</sub>  |                                                  |                                             | 0.50                         | 99.0%                                       | 4.96E-03                                   | 0.02                                        |
| PM <sub>2.5</sub> |                                                  |                                             | 0.50                         | 99.0%                                       | 4.96E-03                                   | 0.02                                        |
| SO <sub>2</sub>   |                                                  |                                             |                              |                                             |                                            |                                             |
| NO <sub>x</sub>   |                                                  |                                             |                              |                                             |                                            |                                             |
| CO                |                                                  |                                             |                              |                                             |                                            |                                             |
| VOC               |                                                  |                                             |                              |                                             |                                            |                                             |
| Lead              |                                                  |                                             |                              |                                             |                                            |                                             |
| Single HAP        |                                                  |                                             |                              |                                             |                                            |                                             |
| Total HAPs        |                                                  |                                             |                              |                                             |                                            |                                             |

<sup>(1)</sup> Emission factor based on the 3M Decatur D-3 Edge Trim Grinder Cyclone Test, July 25-26, 1989. See discussion for details.

## Equipment G3TL - G3 Flake Truck Loadout (Exhaust 026E006)

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(lbs/lb RM) | Max.<br>Capacity <sup>(2)</sup><br>(lbs/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency <sup>(3)</sup><br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|--------------------------------------------------|---------------------------------------------|------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|
| PM                |                                                  |                                             | 0.13                         | 99.0%                                       | 1.27E-03                                   | 5.55E-03                                    |
| PM <sub>10</sub>  |                                                  |                                             | 0.13                         | 99.0%                                       | 1.27E-03                                   | 5.55E-03                                    |
| PM <sub>2.5</sub> |                                                  |                                             | 0.13                         | 99.0%                                       | 1.27E-03                                   | 5.55E-03                                    |
| SO <sub>2</sub>   |                                                  |                                             |                              |                                             |                                            |                                             |
| NO <sub>x</sub>   |                                                  |                                             |                              |                                             |                                            |                                             |
| СО                |                                                  |                                             |                              |                                             |                                            |                                             |
| VOC               |                                                  |                                             |                              |                                             |                                            |                                             |
| Lead              |                                                  |                                             |                              |                                             |                                            |                                             |
| Single HAP        |                                                  |                                             |                              |                                             |                                            |                                             |
| Total HAPs        |                                                  |                                             |                              |                                             |                                            |                                             |

<sup>(1)</sup> Emission factor based on the 3M Decatur D-3 Feed Cyclone Test, July 25-26, 1989. See discussion for details.

<sup>(2)</sup> Maximum capacity is for the total of the listed equipment, derived as described in the discussion section. Throughput for [CONFIDENTIAL].

<sup>(3)</sup> Control efficiency for the BH14 baghouse, from the submitted G3 calculations.

<sup>(2)</sup> Maximum capacity is derived as described in the discussion section relating to the reclaim silos.

<sup>(3)</sup> Control efficiency for the BH14 baghouse, from the submitted G3 calculations.

### Equipment G3BL - G3 Flake Box Loadout (Exhaust 009E015)

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(lbs/lb RM) | Max.<br>Capacity <sup>(2)</sup><br>(lbs/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency <sup>(3)</sup><br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|--------------------------------------------------|---------------------------------------------|------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|
| PM                |                                                  |                                             | 0.13                         | 99.9%                                       | 1.27E-04                                   | 5.55E-04                                    |
| PM <sub>10</sub>  |                                                  |                                             | 0.13                         | 99.9%                                       | 1.27E-04                                   | 5.55E-04                                    |
| PM <sub>2.5</sub> |                                                  |                                             | 0.13                         | 99.9%                                       | 1.27E-04                                   | 5.55E-04                                    |
| SO <sub>2</sub>   |                                                  |                                             |                              |                                             |                                            |                                             |
| NO <sub>x</sub>   |                                                  |                                             |                              |                                             |                                            |                                             |
| CO                |                                                  |                                             |                              |                                             |                                            |                                             |
| VOC               |                                                  |                                             |                              |                                             |                                            |                                             |
| Lead              |                                                  |                                             |                              |                                             |                                            |                                             |
| Single HAP        |                                                  |                                             |                              |                                             |                                            |                                             |
| Total HAPs        |                                                  |                                             |                              |                                             |                                            |                                             |

<sup>(1)</sup> Emission factor based on the 3M Decatur DD-3 Floor Scrap Silo Cyclone and D-3 Edge Trim Silo Cyclone tests, July 25-26, 1989. See discussion for details.

### Equipment G3CW - G3 Die Casting Wheel (Exhausts 026E021, 023)

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(lbs/lb RM) | Max.<br>Capacity <sup>(2)</sup><br>(lbs/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency<br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|--------------------------------------------------|---------------------------------------------|------------------------------|------------------------------|--------------------------------------------|---------------------------------------------|
| PM                |                                                  |                                             | 1.23                         |                              | 1.23                                       | 5.40                                        |
| PM <sub>10</sub>  |                                                  |                                             | 1.23                         | and one                      | 1.23                                       | 5.40                                        |
| PM <sub>2.5</sub> |                                                  |                                             | 1.23                         |                              | 1.23                                       | 5.40                                        |
| SO <sub>2</sub>   |                                                  |                                             |                              |                              |                                            |                                             |
| NO <sub>x</sub>   |                                                  |                                             |                              |                              |                                            |                                             |
| co                |                                                  |                                             |                              |                              |                                            |                                             |
| voc               |                                                  |                                             |                              |                              |                                            |                                             |
| Lead              |                                                  |                                             |                              |                              |                                            |                                             |
| Single HAP        |                                                  |                                             |                              |                              |                                            |                                             |
| Total HAPs        |                                                  |                                             |                              |                              |                                            |                                             |

<sup>(1)</sup> Emission factor based on the 3M Cottage Grove testing performed on April 8, 1992. See discussion for details.

<sup>(2)</sup> Maximum capacity is derived as described in the discussion section relating to the reclaim silos.

<sup>(3)</sup> Control efficiency for the BH1 baghouse, from the submitted G3 calculations.

<sup>(2)</sup> Maximum capacity is derived as described in the discussion section relating to the Die Casting Wheel.

#### G3 Clear & Color Flake Silos (No Exhaust)

(G3FSILO1 - G3 Clear Flake Silo; G3FSILO2 - G3 Color Flake Silo)

(No emission calculations performed; unit has no vent for emissions)

#### G3 Pellet Silos (Exhaust 026H007)

(G3VSILO1 - G3 Pellet Silo 1; G3VSILO2 - G3 Pellet Silo 2; G3VSILO3 - G3 Pellet Silo 3; G3VSILO4 - G3 Pellet Silo 4; G3VSILO5 - G3 Pellet Silo 5,

| Pollutant         | Emission<br>Factor <sup>(1)</sup><br>(lbs/lb RM) | Max.<br>Capacity <sup>(2)</sup><br>(lbs/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency <sup>(3)</sup><br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|-------------------|--------------------------------------------------|---------------------------------------------|------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|
| РМ                |                                                  |                                             | 0.60                         | 99.0%                                       | 6.00E-03                                   | 0.03                                        |
| PM <sub>10</sub>  |                                                  |                                             | 0.60                         | 99.0%                                       | 6.00E-03                                   | 0.03                                        |
| PM <sub>2.5</sub> |                                                  |                                             | 0.60                         | 99.0%                                       | 6.00E-03                                   | 0.03                                        |
| SO <sub>2</sub>   |                                                  |                                             |                              |                                             |                                            |                                             |
| NO <sub>x</sub>   |                                                  |                                             |                              |                                             |                                            |                                             |
| CO                |                                                  |                                             |                              |                                             |                                            |                                             |
| VOC               |                                                  |                                             |                              |                                             |                                            |                                             |
| Lead              |                                                  |                                             |                              |                                             |                                            |                                             |
| Single HAP        |                                                  |                                             |                              |                                             |                                            |                                             |
| Total HAPs        |                                                  |                                             |                              |                                             |                                            |                                             |

<sup>(1)</sup> Emission factor based on the 3M Decatur D-3 Feed Cyclone Test, July 25-26, 1989. See discussion for details.

<sup>(2)</sup> Maximum capacity is for the total of the listed equipment, derived as described in the discussion section.

<sup>(3)</sup> Control efficiency for the BH15 baghouse, from the submitted G3 calculations.

## G3 Mix Room (Exhaust 026E0030))

(G3MRTK1 - G3 Mix Room Tank 1; G3MRTK2 - G3 Mix Room Tank 2; G3MRTK3 - G3 Mix Room Tank 3; G3MRTK4 - G3 Mix Room Tank 4; G3MRSC1 - G3 Mix Room Storage 1; G3MRSC2 - G3 Mix Room Storage 2; G3MRSC3 - G3 Mix Room Storage 3; G3MRH1 - G3 Mix Room Hood 1; G3MRH2 - G3 Mix Room Hood 2;

G3MRH3 - G3 Mix Room Hood 3)

| Pollutant                | Emission<br>Factor <sup>(1)</sup><br>(lbs/batch) | Max.<br>Capacity <sup>(2)</sup><br>(batch/hr) | Emission<br>Rate<br>(lbs/hr) | Control<br>Efficiency<br>(%) | Controlled<br>Emission<br>Rate<br>(lbs/hr) | Controlled<br>Emission<br>Rate<br>(tons/yr) |
|--------------------------|--------------------------------------------------|-----------------------------------------------|------------------------------|------------------------------|--------------------------------------------|---------------------------------------------|
| РМ                       |                                                  |                                               |                              |                              |                                            |                                             |
| P <b>M</b> <sub>10</sub> |                                                  |                                               |                              |                              |                                            |                                             |
| PM <sub>2.5</sub>        |                                                  |                                               |                              |                              |                                            |                                             |
| SO <sub>2</sub>          |                                                  |                                               |                              |                              |                                            |                                             |
| NO <sub>x</sub>          |                                                  |                                               |                              |                              |                                            |                                             |
| CO                       |                                                  |                                               |                              |                              |                                            |                                             |
| VOC                      |                                                  |                                               | 1.22E-03                     |                              | 1.22E-03                                   | 5.34E-03                                    |
| Lead                     |                                                  |                                               |                              |                              |                                            |                                             |
| Single HAP               |                                                  |                                               |                              |                              |                                            |                                             |
| Total HAPs               |                                                  |                                               | 1.20E-03                     |                              | 1.20E-03                                   | 5.24E-03                                    |
| Ethylene glycol          |                                                  |                                               | 2.30E-08                     |                              | 2.30E-08                                   | 1.01E-07                                    |
| Formaldehyde             |                                                  |                                               | 1.08E-03                     |                              | 1.08E-03                                   | 4.72E-03                                    |
| Methanol                 |                                                  |                                               | 1.06E-04                     |                              | 1.06E-04                                   | 4.65E-04                                    |
| Triethylamine            |                                                  |                                               | 1.33E-05                     |                              | 1.33E-05                                   | 5.84E-05                                    |

<sup>(1)</sup> Emission factors from Emission Master software specific to the G3 Mix Room and all equipment modeled therein, as presented in [CONFIDENTIAL].

<sup>(2)</sup> Maximum capacity reflects the maximum number of batches that can be processed per hour; where applicable, a value less than 1.0 indicates a batch time greater than 1.0 hours.

#### **TANKS 4.0.9d**

## **Emissions Report - Detail Format** Tank Indentification and Physical Characteristics

Identification
User Identification:
City:
State:
Company:
Type of Tank:
Description: FOT1
Greenville
South Carolina
3M Company
Vertical Fixed Roof Tank
3M Greenville Film - Greenville, SC Distillate Fuel Oil Tank 1 200,000 gallons

Tank Dimensions
Shell Height (ft):
Diameter (ft):
Liquid Height (ft):
Avg. Liquid Height (ft):
Volume (gallons):
Turnovers:
Net Throughput(gal/yr):
Is Tank Heated (y/n): 31.60 33.00 31.00 15.00 200,000.00 28.74 5,700,000.00

Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition: White/White Good White/White Good

Roof Characteristics

Dome

Type: Height (ft) Radius (ft) (Dome Roof) 0.00 33.00

Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig) 0.00

Meterological Data used in Emissions Calculations: Greenville-S'burg, South Carolina (Avg Atmospheric Pressure = 14.25 psia)

## TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

## FOT1 - Vertical Fixed Roof Tank Greenville, South Carolina

|                           |       |       | aily Liquid S<br>nperature (d |        | Liquid<br>Bulk<br>Temp | Vapo   | or Pressure | (psia) | Vapor<br>Mol. | Liquid<br>Mass | Vapor<br>Mass | Mol.                       | Basis for Vapor Pressure            |
|---------------------------|-------|-------|-------------------------------|--------|------------------------|--------|-------------|--------|---------------|----------------|---------------|----------------------------|-------------------------------------|
| Mixture/Component         | Month | Avg.  | Min.                          | Max.   | (deg F)                | Avg.   | Min.        | Max.   | Weight.       | Fract.         | Fract.        | Weight                     | Calculations                        |
|                           |       |       |                               |        |                        |        |             |        |               |                |               | e management of the second |                                     |
| Distillate fuel oil no. 2 | All   | 56.00 | 11.00                         | 101.00 | 0.00                   | 0.0057 | 0.0031      | 0.0220 | 130.0000      |                |               | 188.00                     | Option 1: VP50 = .0045 VP60 = .0065 |

## TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

## FOT1 - Vertical Fixed Roof Tank Greenville, South Carolina

| Annual Emission Calcaulations                                              |                    |
|----------------------------------------------------------------------------|--------------------|
|                                                                            |                    |
| Standing Losses (lb):                                                      | 137.8891           |
| Vapor Space Volume (cu ft):                                                | 16,133.9123        |
| Vapor Density (lb/cu ft):                                                  | 0.0001             |
| Vapor Space Expansion Factor:                                              | 0.1759             |
| Vented Vapor Saturation Factor:                                            | 0.9943             |
| Tank Vapor Space Volume:                                                   |                    |
| Vapor Space Volume (cu ft):                                                | 16,133.9123        |
| Tank Diameter (ft):                                                        | 33.0000            |
| Vapor Space Outage (ft):                                                   | 18.8635            |
| Tank Shell Height (ft):                                                    | 31.6000            |
| Average Liquid Height (ft):                                                | 15.0000            |
| Roof Outage (ft):                                                          | 2.2635             |
| Roof Outage (Dome Roof)                                                    |                    |
| Roof Outage (ft):                                                          | 2.2635             |
| Dome Radius (ft):                                                          | 33.0000            |
| Shell Radius (ft):                                                         | 16.5000            |
| apor Density                                                               |                    |
| Vapor Density (lb/cu ft):                                                  | 0.0001             |
| Vapor Molecular Weight (lb/lb-mole):                                       | 130.0000           |
| Vapor Pressure at Daily Average Liquid                                     |                    |
| Surface Temperature (psia):                                                | 0.0057             |
| Daily Avg. Liquid Surface Temp. (deg. R):                                  | 515.6700           |
| Daily Average Ambient Temp. (deg. F):                                      | 59.9583            |
| Ideal Gas Constant R                                                       | 40.704             |
| (psia cuft / (lb-mol-deg R)):                                              | 10.731<br>459.6700 |
| Liquid Bulk Temperature (deg. R):<br>Tank Paint Solar Absorptance (Shell): | 0.1700             |
| Tank Paint Solar Absorptance (Roof):                                       | 0.1700             |
| Daily Total Solar Insulation                                               | 0.1700             |
| Factor (Btu/sqft day):                                                     | 1,411.2698         |
| apor Space Expansion Factor                                                |                    |
| Vapor Space Expansion Factor:                                              | 0.1759             |
| Daily Vapor Temperature Range (deg. R):                                    | 90.0000            |
| Daily Vapor Pressure Range (psia):                                         | 0.0189             |
| Breather Vent Press. Setting Range(psia):                                  | 0.0000             |
| Vapor Pressure at Daily Average Liquid                                     |                    |
| Surface Temperature (psia):                                                | 0.0057             |
| Vapor Pressure at Daily Minimum Liquid                                     |                    |
| Surface Temperature (psia):                                                | 0.0031             |
| Vapor Pressure at Daily Maximum Liquid                                     |                    |
| Surface Temperature (psia):                                                | 0.0220             |
| Daily Avg. Liquid Surface Temp. (deg R):                                   | 515.6700           |
| Daily Min. Liquid Surface Temp. (deg R):                                   | 470.6700           |
| Daily Max. Liquid Surface Temp. (deg R):                                   | 560,6700           |
| Daily Ambient Temp. Range (deg. R):                                        | 21.5000            |
| ented Vapor Saturation Factor                                              |                    |
| Vented Vapor Saturation Factor:                                            | 0.9943             |
| Vapor Pressure at Daily Average Liquid:                                    |                    |
| Surface Temperature (psia):                                                | 0.0057             |
| Vapor Space Outage (ft):                                                   | 18.8635            |
| Vorking Losses (lb):                                                       | 100.5643           |
| Vapor Molecular Weight (lb/lb-mole):                                       | 130.0000           |
| Vapor Pressure at Daily Average Liquid                                     |                    |
| Surface Temperature (psia):                                                | 0.0057             |
| Annual Net Throughput (gal/yr.):                                           | 5,700,000.0000     |
| Annual Tumovers:                                                           | 28.7384            |
| Turnover Factor:                                                           | 1.0000             |
| Maximum Liquid Volume (gal):                                               | 200,000.0000       |
| Maximum Liquid Height (ft):                                                | 31.0000            |
| Tank Diameter (ft):                                                        | 33.0000            |
| Working Loss Product Factor:                                               | 1.0000             |
|                                                                            |                    |
| otal Losses (lb):                                                          | 238.4534           |
|                                                                            |                    |

## TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

**Emissions Report for: Annual** 

FOT1 - Vertical Fixed Roof Tank Greenville, South Carolina

|                           | Losses(lbs)                                 |        |        |  |  |  |  |
|---------------------------|---------------------------------------------|--------|--------|--|--|--|--|
| Components                | Working Loss Breathing Loss Total Emissions |        |        |  |  |  |  |
| Distillate fuel oil no. 2 | 100.56                                      | 137.89 | 238.45 |  |  |  |  |

#### **TANKS 4.0.9d**

### **Emissions Report - Detail Format** Tank Indentification and Physical Characteristics

Identification
User Identification:
City:
State: FOT2 Greenville South Carolina 3M Company Vertical Fixed Roof Tank 3M Greenville Film - Greenville, SC Distillate Fuel Oil Tank 2 100,000 gallons Company: Type of Tank: Description:

Tank Dimensions
Shell Height (ft):
Diameter (ft):
Liquid Height (ft):
Avg. Liquid Height (ft):
Volume (gallons):
Turnovers:
Net Throughput(gallyr):
Is Tank Heated (y/n): 23.75 27.00 23.00 11.50 100,000.00 28.74 2,840,000.00 Ν

Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition: White/White Good White/White Good

**Roof Characteristics** 

Dome

Type: Height (ft) Radius (ft) (Dome Roof) 0.00 27.00

Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig) 0.00

Meterological Data used in Emissions Calculations: Greenville-S'burg, South Carolina (Avg Atmospheric Pressure = 14.25 psia)

## TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

# FOT2 - Vertical Fixed Roof Tank Greenville, South Carolina

| ,                         |       |       |                              |       |                        |        |             |        |               |                |               |        |                                    |  |
|---------------------------|-------|-------|------------------------------|-------|------------------------|--------|-------------|--------|---------------|----------------|---------------|--------|------------------------------------|--|
|                           |       |       | ally Liquid S<br>perature (d |       | Liquid<br>Bulk<br>Temp | Vapo   | or Pressure | (psia) | Vapor<br>Mol. | Liquid<br>Mass | Vapor<br>Mass | Mol.   | Basis for Vapor Pressure           |  |
| Mixture/Component         | Month | Avg.  | Min.                         | Max.  | (deg F)                | Avg.   | Min.        | Max.   | Weight.       | Fract.         | Fract.        | Weight | Calculations                       |  |
|                           |       |       |                              |       |                        |        |             |        |               |                |               |        |                                    |  |
| Distillate fuel oil no. 2 | All   | 61.86 | 56.32                        | 67.41 | 59.98                  | 0.0070 | 0.0058      | 0.0084 | 130.0000      |                |               | 188.00 | Option 1: VP60 = .0065 VP70 = .009 |  |

## TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

## FOT2 - Vertical Fixed Roof Tank Greenville, South Carolina

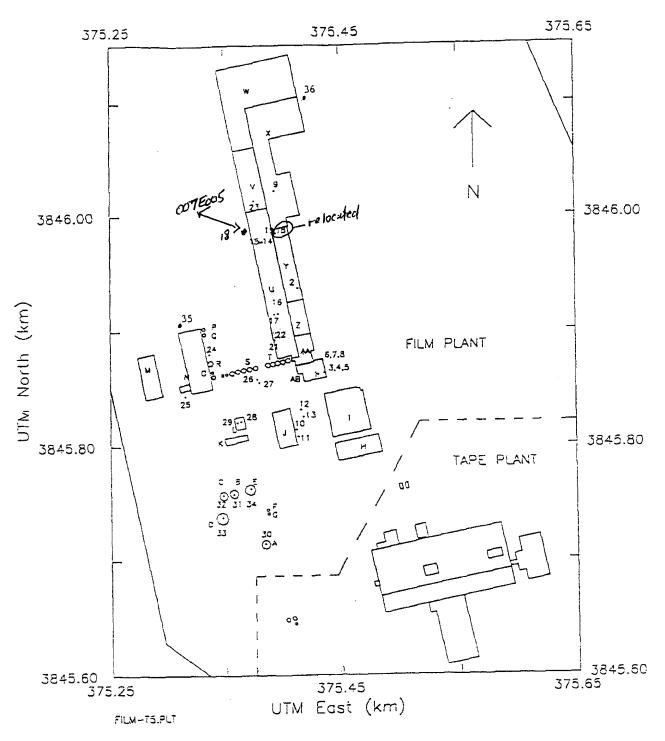
| Annual Emission Calcaulations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| The state of the s |                         |
| Standing Losses (lb):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.2780                 |
| Vapor Space Volume (cu ft):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8,074.1412              |
| Vapor Density (lb/cu ft):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0002                  |
| Vapor Space Expansion Factor:<br>Vented Vapor Saturation Factor:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0427                  |
| vented vapor Saturation Factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9948                  |
| Tank Vapor Space Volume:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |
| Vapor Space Volume (cu ft):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8,074.1412              |
| Tank Diameter (ft):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27,0000                 |
| Vapor Space Outage (ft):<br>Tank Shell Height (ft):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.1019                 |
| Average Liquid Height (ft):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23.7500<br>11.5000      |
| Roof Outage (ft):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.8519                  |
| Roof Outage (Dome Roof)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |
| Roof Outage (ft):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.8519                  |
| Dome Radius (ft):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27.0000                 |
| Shell Radius (ft):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13.5000                 |
| Vapor Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |
| Vapor Density (lb/cu ft):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0002                  |
| Vapor Molecular Weight (lb/lb-mole):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 130.0000                |
| Vapor Pressure at Daily Average Liquid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |
| Surface Temperature (psia):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0070                  |
| Daily Avg. Liquid Surface Temp. (deg. R):<br>Daily Average Ambient Temp. (deg. F):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 521.5349                |
| Ideal Gas Constant R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 59,9583                 |
| (psia cuft / (/b-mol-deg R)):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.731                  |
| Liquid Bulk Temperature (deg. R):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 519.6483                |
| Tank Paint Solar Absorptance (Shell):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1700                  |
| Tank Paint Solar Absorptance (Roof):<br>Daily Total Solar Insulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1700                  |
| Factor (Btu/sqft day):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,411,2698              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| Vapor Space Expansion Factor<br>Vapor Space Expansion Factor:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |
| Daily Vapor Temperature Range (deg. R):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0427<br>22.1976       |
| Daily Vapor Pressure Range (psia):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0026                  |
| Breather Vent Press. Setting Range(psia):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0000                  |
| Vapor Pressure at Daily Average Liquid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |
| Surface Temperature (psia):<br>Vapor Pressure at Daily Minimum Liquid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0070                  |
| Surface Temperature (psia):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0058                  |
| Vapor Pressure at Daily Maximum Liquid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0036                  |
| Surface Temperature (psia):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0084                  |
| Daily Avg. Liquid Surface Temp. (deg R):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 521.5349                |
| Daily Min. Liquid Surface Temp. (deg R);<br>Daily Max. Liquid Surface Temp. (deg R);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 515.9855                |
| Daily Ambient Temp. Range (deg. R):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 527.0843<br>21.5000     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.3000                 |
| Vented Vapor Saturation Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |
| Vented Vapor Saturation Factor:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9948                  |
| Vapor Pressure at Daily Average Liquid:<br>Surface Temperature (psia):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0070                  |
| Vapor Space Outage (ft):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.1019                 |
| Martin - Lanca (III)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |
| Working Losses (lb):<br>Vapor Molecular Weight (lb/lb-mole):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 61.2364                 |
| Vapor Pressure at Daily Average Liquid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 130.0000                |
| Surface Temperature (psia):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0070                  |
| Annual Net Throughput (gal/yr.):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,840,000.0000          |
| Annual Turnovers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28.7384                 |
| Turnover Factor:<br>Maximum Liquid Volume (gal):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0000                  |
| Maximum Liquid Volume (gal).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100,000.0000<br>23.0000 |
| Tank Diameter (ft):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27.0000                 |
| Working Loss Product Factor:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0000                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| Total Losses (lb):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 81.5144                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |

## TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

### **Emissions Report for: Annual**

FOT2 - Vertical Fixed Roof Tank Greenville, South Carolina

|                           |              | Losses(lbs)    |                 |
|---------------------------|--------------|----------------|-----------------|
| Components                | Working Loss | Breathing Loss | Total Emissions |
| Distillate fuel oil no. 2 | 61.24        | 20.28          | 81.51           |


# Attachment C

Process Flow Diagrams & Detailed Process Description

Process flow diagrams and their descriptions are confidential and are therefore not included in this public copy of this permit application.

# Attachment D

Facility Stack/Vent Diagram



Scale: 1 cm = 30.8 m

# Legend

|          | Sources:            |     | Structures:          | Height (ft): |
|----------|---------------------|-----|----------------------|--------------|
| l.       | 001E-112            | A.  | Methanol Tank        | 18.21        |
| 2.       | 001E-002            | В.  | Glycol Tank          | 17.59        |
| 3.       | 001E-097            | C.  | Glycol Tank          | 19.06        |
| ر.<br>4. | 001E-098            | D.  | No. 6 Oil Tank       | 33.47        |
| 5.       | 001E-099            | E.  | No. 2 Oil Tank       | 29.27        |
| 6.       | 001E-101            | F.  | Liquid Nitrogen Tank | 20.01        |
| 7.       | 001E-101            | G.  | Liquid Nitrogen Tank | 20.01        |
| 8.       | 001E-103            | H.  | Building 12          | 20.75        |
| 9.       | 001E-057            | I.  | Building 2           | 21.18        |
| 10.      | 003E-001            | J.  | Building 3           | 30.00        |
| 11.      | 003E-002            | K.  | HVAC                 | 12.50        |
| 12.      | 003E-003            | L.  | Cooling Tower        | 12.50        |
| 13.      | 003E-004            | M.  | Building 10          | 21.07        |
| 14.      | 007E-001            | N.  | Truck Dock           | 15.00        |
| 15.      | 007E-002            | Q.  | Building 9           | 28.67        |
| 16.      | 007E-003            | P.  | Tank                 | 15.00        |
| 17.      | 007E-004            | Q.  | Tank                 | 15.00        |
| 18.      | -888E-036 7007 E005 | R.  | (Top to Bottom)      |              |
| 19.      | 007E-007            |     | Tank                 | 15.00        |
| 21.      | 007E-008            |     | Tank                 | 15.00        |
| 22.      | 007E-073            |     | Tank                 | 30.00        |
| 23.      | 008E-001            | S.  | (Left to Right)      |              |
| 24.      | 009E-014            |     | Tank                 | 30.00        |
| 25.      | 009E-015            |     | Tank                 | 30.00        |
| 26.      | 388E-001            |     | Tank                 | 75.00        |
| 27.      | 888E-002            |     | Tank                 | 75.00        |
| 28.      | 888E-003            |     | Tank                 | 75.00        |
| 29.      | 888E-004            |     | Tank                 | 75.00        |
| 30.      | 888E-005            |     | Tank                 | 75.00        |
| 31.      | 888E-006            | Τ.  | (Left to Right)      |              |
| 32.      | 888E-007            | • • | Tank                 | 75.00        |
| 33.      | 888E-008            |     | Tank                 | 75.00        |
| 34.      | 888E-009            |     | Tank                 | 75.00        |
| 35.      | 888E-037            |     | Tank                 | 75.00        |
| 36.      | 888E-035            |     | Tank                 | 75.00        |
| 20.      |                     | U.  | Building 7           | 54.75        |
|          |                     | V.  | Building 8           | 55.75        |
|          |                     | W.  | Building I-A         | 24.00        |
|          |                     | X.  | Building 1-B         | 32.00        |
|          |                     | Y.  | Building I-C         | 42.75        |
|          |                     | Z.  | Building I-D         | 61.60        |
|          |                     | AA. | Building 1-E         | 104.01       |
|          |                     | AB. | Building 1-F         | 96.34        |

# Attachment E

Permit Markup



South Carolina Department of Health and Environmental Control

# Part 70 Air Quality Permit

3M Company (Greenville Film Plant) 1400 Perimeter Road Greenville, SC 29605

In accordance with the provisions of the Pollution Control Act, Sections 48-1-50(5) and 48-1-110(a), and the 1976 Code of Laws of South Carolina, as amended, Regulation 61-62, the above named permittee is hereby granted permission to discharge air contaminants into the ambient air. The Bureau of Air Quality authorizes the operation of this facility and its applicable equipment specified herein in accordance with the plans, specifications and other information submitted in the Title V permit application dated November 04, 2003.

This permit is subject to and conditioned upon the terms, limitations, standards, and schedules contained in or specified on the 36 pages, with the accompanying attachments, of this permit.

Permit Number: TV-1200-0073 Effective Date: January 01, 2006
Issue Date: November 22, 2005 Expiration Date: December 31, 2010

Director, Engineering Services Division Bureau of Air Quality

### 3M Company (Greenville Film Plant) TV-1200-0073 Page 5 of 42

(Updated 8/27/09)

Additional applicable NAICS code

#### **PART 1.0 GENERAL INFORMATION**

#### A. APPLICABLE PERMIT DATES

ISSUE DATE : November 22, 2005 EFFECTIVE DATE : January 1, 2006 EXPIRATION DATE : December 31, 2010

RENEWAL APPLICATION DUE : June 30, 2010

#### **B.** FACILITY INFORMATION

ENVIRONMENTAL CONTACT : Barry Stone
CONTACT TELEPHONE NUMBER : 864-299-4369
INTERNET E-MAIL ADDRESS : blstone@mmm.com
FACILITY LOCATION : 1400 Perimeter Road - Greenville

COUNTY : Greenville SIC CODE(S) : 3081, 3861 NAICS CODE(S) : 326113, 325992, 333315

AFS CODE : 4504500073

#### C. FACILITY ADDRESS

FACILITY NAME : 3M Company (Greenville Film Plant)

ADDRESS : 1400 Perimeter Road CITY, STATE, ZIP : Greenville, SC 29605

#### D. FACILITY BILLING ADDRESS

FACILITY BILLING NAME : 3M Company (Greenville Film Plant)

1408

ADDRESS : 1400 Perimeter Road CITY, STATE, ZIP : Greenville, SC 29605

## 3M Company (Greenville Film Plant) TV-1200-0073 Page 17 of 42

(Updated 8/27/09)

| Condition<br>Number | Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.B.7               | The permittee shall comply with the standards for recycling and emissions reduction pursuant to 40 CFR Part 82, Subpart F, Protection of Stratospheric Ozone, Recycling and Emissions Reduction, except as provided for motor vehicle air conditioners (MVACs) in Subpart B. If the permittee performs a service on motor (fleet) vehicles that involves ozone-depleting substance refrigerant in MVACs, the permittee is subject to all applicable requirements of 40 CFR Part 82, Subpart B, Servicing of MVACs.                                                                                                                                                                                                                                                                                                                                                                                          |
| 4.B.8               | The permittee shall comply with the standards of performance for asbestos abatement operations pursuant to 40 CFR Part 61.145 and SC Regulation 61-86.1, including, but not limited to, requirements governing training, licensing, notification, work practice, cleanup, and disposal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4.B.9               | 3M Company's Film Plant (1200-0073) and Tape Plant (1200-0148) are considered one facility for BACT/LAER purposes. This facility (Film Plant and Tape Plant) made application submittal for a maximum potential VOC facility emission rate of 1098.2 tons per year. The facility must comply with SC Regulation 61-62.1, II,A before the facility may increase VOC emissions over the 1098.2 TPY permit limit. Increases in the VOC emissions from this facility may be subject to the requirements of SC Regulation 61-62.5, Standard 5.1, Best Available Control Technology (BACT)/Lowest Achievable Emission Rate ("LAER") Applicable to Volatile Organic Compounds. 3M Company must use the emissions from both plants when addressing emission concerns. In the event that one of the plants is sold, the emission rates at that time will be frozen and BACT/LAER applied to each plant individually. |
| 4.B.10              | This facility is subject to the provisions of 40 CFR Part 63, National Emission Standards for Hazardous Air Pollutants, Subparts A and JJJ, Group IV Polymers and Resins. Existing affected sources shall comply with the applicable provisions of Subparts A and JJJ no later than June 19, 2001 unless otherwise noted in the Subparts for any specific provisions (40 CFR 63.1331). Any new affected sources shall comply with the requirements of these Subparts upon initial start-up unless otherwise noted for any specific provisions (40 CFR 63.1331). The existing affected sources subject to 63.1331 shall be in compliance by August 27, 2001 or upon start-up for new affected sources.                                                                                                                                                                                                       |
| 4.B.11              | This facility is subject to the provisions of 40 CFR Part 63, National Emission Standards for Hazardous Air Pollutants, Subparts A and JJJJ, Paper and Other Web Coating. Existing affected sources shall comply with the applicable provisions of Subparts A and JJJJ no later than December 05, 2005 unless otherwise noted in the Subparts for any specific provisions. Any new affected sources shall comply with the requirements of these Subparts upon initial start-up unless otherwise noted for any specific provisions.                                                                                                                                                                                                                                                                                                                                                                          |
| 4.B.12              | This facility is subject to the provisions of 40 CFR Part 63, National Emission Standards for Hazardous Air Pollutants, Subparts A and DDDDD, Industrial, Commercial, And Institutional Boilers And Process Heaters. Existing affected sources shall comply with the applicable provisions of Subparts A and DDDDD no later than September 13, 2007 unless otherwise noted in the Subparts for any specific provisions. In accordance with 63.7506(b)(1) and (b)(2), the existing boilers and process heaters at 3M Film are only subject to the initial notification requirements listed in 63.9(b). Any new affected sources shall comply with the requirements of these Subparts upon initial start-up unless otherwise noted for any specific provisions.                                                                                                                                               |

## PART 5.0 EMISSION UNIT REQUIREMENTS

## A. EMISSION UNIT DESCRIPTION

Table 5.1 is a description of emission units located at this facility.

## 3M Company (Greenville Film Plant) TV-1200-0073 Page 18 of 42

(Updated 8/27/09)

| REDO TA | REDO TABLE 5.1 TO MATCH CHANGES IDENTIFIED IN FORM C (APPENDIX A). |                                                                 |  |  |  |
|---------|--------------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|
|         | TABLE 5.1 EMISSION UP                                              | NITS                                                            |  |  |  |
| Unit ID | Unit Description                                                   | Control Device Description                                      |  |  |  |
| 01      | Raw Materials Preparation Section                                  | N/A                                                             |  |  |  |
| 02      | Polymerization Reaction / Material Recovery Section                | Baghouse, After-Condenser <sup>1</sup>                          |  |  |  |
| 03      | Resin Train 1/2                                                    | N/A                                                             |  |  |  |
| 04      | G1 Film Line                                                       | Baghouse                                                        |  |  |  |
| 05      | G2 Film Line                                                       | Baghouses                                                       |  |  |  |
| 06      | Tank Farm                                                          | N/A                                                             |  |  |  |
| 07      | Visual Converting Process                                          | Baghouse                                                        |  |  |  |
| 08      | PET Reclaim Process                                                | Baghouses                                                       |  |  |  |
| 09      | Box/Tote Material Handling                                         | Baghouse                                                        |  |  |  |
| 10      | G1/G2 Dryer Material Handling                                      | Dryer Tower Baghouse G1(BH13),<br>Dryer Tower Baghouse G2 (BH5) |  |  |  |
| 11      | Steam Boiler #1                                                    | N/A                                                             |  |  |  |
| 12      | Steam Boiler #2                                                    | N/A                                                             |  |  |  |
| 13      | Born Oil Heater                                                    | N/A                                                             |  |  |  |
| 14      | Carotek Oil Heater                                                 | N/A                                                             |  |  |  |
| 15      | G3 Film Line                                                       | Raghouses                                                       |  |  |  |

N/A = Not Applicable (page updated 10/17/07)

### B. CONTROL DEVICE DESCRIPTION

REDO TABLE 5.2 TO MATCH CHANGES IDENTIFIED IN FORM C (APPENDIX A).

|                      | TABLE 5.2 CONTROL DEVICES                         |             |                            |  |  |  |
|----------------------|---------------------------------------------------|-------------|----------------------------|--|--|--|
| Control Device<br>ID | ID Control Device Description                     |             | Pollutant(s)<br>Controlled |  |  |  |
| BH1                  | 09 (BTLU) Baghouse                                | 1982        | Particulates               |  |  |  |
| BH2                  | 02 (VSILO) Baghouse                               | 1972        | Particulates               |  |  |  |
| BH3                  | 08 (RSILO) Baghouse                               | 1972        | Particulates               |  |  |  |
| BH4                  | 08 (FSILO) Baghouse                               | 1982        | Particulates               |  |  |  |
| BH5                  | 10 (DTOW2) Baghouse                               | 1972 (1982) | Particulates               |  |  |  |
| BH6                  | 05 (G2GR) Baghouse                                | 1982 (2002) | Particulates               |  |  |  |
| BH7                  | 04 (G1GR) Baghouse                                | 1982 (2002) | Particulates               |  |  |  |
| BH9                  | 07 (VSET) Baghouse                                | 1997        | Particulates               |  |  |  |
| BH10                 | 08 (RBLD, RVAC) Baghouse                          | 1998        | Particulates               |  |  |  |
| BH11                 | 05 (G2ET) Baghouse                                | 2002        | Particulates               |  |  |  |
| BH12                 | 04 (G1ET)                                         | 2006        | Particulates               |  |  |  |
| BH13                 | 10 (DTOW1) Baghouse                               | 2006        | Particulates               |  |  |  |
| MEAC <sup>1</sup>    | 02 (EGR1, ICR1, EGR2, ICR2, RGDT) After Condenser | 1996        | VOC                        |  |  |  |
| BH14                 | Baghouse                                          | 2008        | Particulates               |  |  |  |
| BH15                 | Baghouse                                          | 2008        | Particulates               |  |  |  |

<sup>&</sup>lt;sup>1</sup> This unit was voluntarily installed. This unit is not required by any regulation or standard. Therefore, no operational limits will be placed on this unit.

## C. EQUIPMENT DESCRIPTION

A description of the equipment located at this facility is provided in the following tables:

## 3M Company (Greenville Film Plant) TV-1200-0073 Page 19 of 42

(Updated 8/27/09)

| REDO TA  | REDO TABLE 5.3 TO MATCH CHANGES IDENTIFIED IN FORM C (APPENDIX A).          |             |     |                     |  |  |  |
|----------|-----------------------------------------------------------------------------|-------------|-----|---------------------|--|--|--|
|          | TABLE 5.3 UNIT ID 01 - Raw Materials Preparation Section                    |             |     |                     |  |  |  |
| Equip ID | Equip ID Equipment Description Installation Date Control Device ID Stack ID |             |     |                     |  |  |  |
| PP1      | Esterification System #1                                                    | 1972 (1994) | N/A | 001E112,<br>001E103 |  |  |  |
| PP2      | Esterification System #2                                                    | 1972 (1994) | N/A | 001E112,<br>001E097 |  |  |  |
| RB       | Blending/Mixing                                                             | 1972        | N/A | 001E092             |  |  |  |
| EGT      | Ethylene Glycol Day Tank                                                    | 1972 (1982) | N/A | 001E096             |  |  |  |

N/A = Not Applicable

(page updated 6/26/06)

|          | age updated 6/26/06)<br>REDO TABLE 5.4 TO MATCH CHANGES IDENTIFIED IN FORM C (APPENDIX A). |                   |                   |                     |  |  |
|----------|--------------------------------------------------------------------------------------------|-------------------|-------------------|---------------------|--|--|
|          | TABLE 5.4 UNIT ID 02 - Polymerization Reaction/Material Recovery Section                   |                   |                   |                     |  |  |
| Equip ID | Equipment Description                                                                      | Installation Date | Control Device ID | Stack ID            |  |  |
| PC1      | Polycon #1                                                                                 | 1972 (1994)       | N/A               | 001E112,<br>001E102 |  |  |
| PC2      | Polycon #2                                                                                 | 1972 (1994)       | N/A               | 001E112,<br>001E101 |  |  |
| PC3      | Polycon #3                                                                                 | 1972 (1994)       | N/A               | 001E112,<br>001E099 |  |  |
| PC4      | Polycon #4                                                                                 | 1972 (1994)       | N/A               | 001E112,<br>001E098 |  |  |
| EGR1     | Train 1 REG Receiver                                                                       | 1983              | MEAC1             | 001E112             |  |  |
| MER1     | Train 1 MeOH Receiver                                                                      | 1983              | N/A               | N/A                 |  |  |
| ICR1     | Train 1 Intermediate Cut Receiver                                                          | 1990              | MEAC <sup>1</sup> | 001E112             |  |  |
| EGR2     | Train 2 REG Receiver                                                                       | 1983              | MEAC <sup>1</sup> | 001E112             |  |  |
| MER2     | Train 2 MeOH Receiver                                                                      | 1983              | N/A               | N/A                 |  |  |
| ICR2     | Train 2 Intermediate Cut Receiver                                                          | 1990              | MEAC <sup>1</sup> | 001E112             |  |  |
| RGDT     | Recovered EG Day Tank                                                                      | 1994              | MEAC <sup>1</sup> | 001E112             |  |  |
| REGT     | Recovered EG Tank                                                                          | 1972              | N/A               | 888E007             |  |  |
| MEOH     | Methanol Tank                                                                              | 1972              | N/A               | 888E005             |  |  |
| VSILO    | Virgin Silo Airveying including<br>Master Batch and Virgin Silos                           | 1972 (1982)       | BH2               | 888E001             |  |  |

This unit was voluntarily installed. This unit is not required by any regulation or standard. Therefore, no operational limits will be placed on this unit.

N/A = Not Applicable

#### REDO TABLE 5.5 TO MATCH CHANGES IDENTIFIED IN FORM C (APPENDIX A). TABLE 5.5 UNIT ID 03 - Resin Train 1/2 **Equipment Description Equip ID Installation Date Control Device ID** Stack ID EJT1 Vertical Ejector Tower 1972 (1982) 888E003 N/A Vertical Ejector Tower EJT2 1995 888E004 N/A

N/A = Not Applicable

### REDO TABLE 5.6 TO MATCH CHANGES IDENTIFIED IN FORM C (APPENDIX A).

| TABLE 5.6 UNIT ID 04 - G1 Film Line |                                        |                   |                   |          |  |
|-------------------------------------|----------------------------------------|-------------------|-------------------|----------|--|
| Equip ID                            | Equipment Description                  | Installation Date | Control Device ID | Stack ID |  |
| G1DT                                | G1 Dryer Tower                         | 1972              | N/A               | N/A      |  |
| G1XT                                | G1 Extruder                            | 1972              | N/A               | 001E057  |  |
| G1TN                                | G1 Tenter                              | 1972              | N/A               | 001E002  |  |
| G1GR                                | G1 Grinder Airveying                   | 1972              | BH7               | 005E005  |  |
| G1ET                                | G1 Edge Trimmer including<br>Airveying | 1972              | BH12              | 888E038  |  |

## 3M Company (Greenville Film Plant) TV-1200-0073 Page 20 of 42

(Updated 8/27/09)

| REDO TA                             | REDO TABLE 5.6 TO MATCH CHANGES IDENTIFIED IN FORM C (APPENDIX A).          |  |  |  |  |  |  |  |
|-------------------------------------|-----------------------------------------------------------------------------|--|--|--|--|--|--|--|
| TABLE 5.6 UNIT ID 04 - G1 Film Line |                                                                             |  |  |  |  |  |  |  |
| Equip ID                            | Equip ID Equipment Description Installation Date Control Device ID Stack ID |  |  |  |  |  |  |  |
| OLS                                 | OLS OLS 1972 N/A 001E043                                                    |  |  |  |  |  |  |  |
| N/A = Not Ap                        | $\sqrt{A}$ = Not Applicable                                                 |  |  |  |  |  |  |  |

| 10C00 T101C C 7   | TO 111 TO 1 1 O 1 1 A 1 1 O C O 1 C    | ·                                      | 00110/100000000                                      |
|-------------------|----------------------------------------|----------------------------------------|------------------------------------------------------|
|                   | TO MATCH CHANGES ID                    | 1611161611111                          | (11.21.4.7.7.41.11.11.41.11.11.11.11.11.11.11.11.11. |
|                   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | IRW LIAPPENIUS AL                                    |
| TEB 0 17 IBEE 0.7 | 10 10 11 011 0111 11 10 10             |                                        |                                                      |
|                   |                                        |                                        |                                                      |
|                   |                                        |                                        |                                                      |

| Equip ID |                                  | I ID 05 - G2 Film I | <del></del>       | C4I-ID              |
|----------|----------------------------------|---------------------|-------------------|---------------------|
| Equip ID | Equipment Description            | Installation Date   | Control Device ID | Stack ID            |
| G2DT     | G2 Dryer Tower                   | 1982                | N/A               | N/A                 |
| G2XT     | G2 Extruder                      | 1982                | N/A               | 007E073             |
| G2GR     | G2 Grinder including Airveying   | 1982 (2002)         | ВН6               | 007E007             |
| G2ET     | G2 Edge Trim including Airveying | 1982 (2002)         | BH11              | 007E005             |
| G2PC     | P Coater                         | 1982                | N/A               | 007E003,<br>007E004 |
| G2GC     | G Coater                         | 1982                | N/A               | 007E001,<br>007E002 |
| G2C      | C Oven                           | 1982                | N/A               | 008E001             |

N/A = Not Applicable

## REDO TABLE 5.8 TO MATCH CHANGES IDENTIFIED IN FORM C (APPENDIX A).

| TABLE 5.8 UNIT ID 06 - Tank Farm |                          |                   |                   |          |  |
|----------------------------------|--------------------------|-------------------|-------------------|----------|--|
| Equip ID                         | Equipment Description    | Installation Date | Control Device ID | Stack ID |  |
| DMTT                             | DMT Tank                 | 1994              | N/A               | N/A      |  |
| VEGT                             | Virgin EG Tank           | 1972              | N/A               | 888E006  |  |
| FOT1                             | Residual Fuel Oil Tank   | 1980              | N/A               | 888E008  |  |
| FOT2                             | Distillate Fuel Oil Tank | 1972              | N/A               | 888E009  |  |

N/A = Not Applicable

## REDO TABLE 5.9 TO MATCH CHANGES IDENTIFIED IN FORM C (APPENDIX A).

| TABLE 5.9 UNIT ID 07 - Visual Converting Process |                                                      |                   |                   |          |  |
|--------------------------------------------------|------------------------------------------------------|-------------------|-------------------|----------|--|
| Equip ID                                         | Equipment Description                                | Installation Date | Control Device ID | Stack ID |  |
| CT01                                             | Cut-to-Size 1 with Collection<br>Cyclone Separator 1 | 1994              | ВН9               | 888E035  |  |
| CT02                                             | Cut-to-Size 2 with Collection Cyclone Separator 2    | 1994              | ВН9               | 888E035  |  |
| VSET                                             | VSET Edge                                            | 1996              | ВН9               | 888E035  |  |

## REDO TABLE 5.10 TO MATCH CHANGES IDENTIFIED IN FORM C (APPENDIX A).

| TABLE 5.10 UNIT ID 08 - PET Reclaim Process |                                                                    |                   |                   |          |  |
|---------------------------------------------|--------------------------------------------------------------------|-------------------|-------------------|----------|--|
| Equip ID                                    | Equipment Description                                              | Installation Date | Control Device ID | Stack ID |  |
| FSILO                                       | Flake Silo including Airveying                                     | 1972 (1982)       | BH4               | 009E014  |  |
| RBLD                                        | PET Reclaim Building                                               | 1998              | BH10              | 888E037  |  |
| RVAC                                        | PET Reclaim Vacuum                                                 | 1998              | BH10              | 888E037  |  |
| PTZR                                        | Reclaim Pellitizers                                                | 1972              | N/A               | N/A      |  |
| RSILO                                       | Reclaim Silo Airveying including<br>Reclaim and other Virgin Silos | 1972 (1982)       | ВН3               | 888E002  |  |

N/A = Not Applicable

## REDO TABLE 5.11 TO MATCH CHANGES IDENTIFIED IN FORM C (APPENDIX A).

| TABLE 5.11 UNIT ID 09 - Box/Tote Material Handling |                                                                             |             |     |         |  |
|----------------------------------------------------|-----------------------------------------------------------------------------|-------------|-----|---------|--|
| Equip ID                                           | Equip ID Equipment Description Installation Date Control Device ID Stack ID |             |     |         |  |
| BTLU                                               | Box/Tote Airveying                                                          | 1972 (1982) | BH1 | 009E015 |  |

## 3M Company (Greenville Film Plant) TV-1200-0073 Page 21 of 42

(Updated 8/27/09)

| REDO TABLE 5.12 TO MATCH CHANGES IDENTIFIED IN FORM C (APPENDIX A). |                       |                   |                   |          |  |  |
|---------------------------------------------------------------------|-----------------------|-------------------|-------------------|----------|--|--|
| TABLE 5.12 UNIT ID 10 - G1/G2 Dryer Material Handling               |                       |                   |                   |          |  |  |
| Equip ID                                                            | Equipment Description | Installation Date | Control Device ID | Stack ID |  |  |
| DTOW1                                                               | G1Dryer Airveying     | 2006              | BH13              | 888E039  |  |  |
| DTOW2                                                               | G2Dryer Airyeying     | 1972 (1982)       | BH5               | 007F008  |  |  |

| TABLE 5.13 UNIT ID 11 - Steam Boiler #1 |                                                                    |             |     |         |  |  |  |
|-----------------------------------------|--------------------------------------------------------------------|-------------|-----|---------|--|--|--|
| Equip ID                                | Equipment Description Installation Date Control Device ID Stack ID |             |     |         |  |  |  |
| SB1                                     | 57.9 million BTU/hr Steam Boiler #1                                | 1972 (2003) | N/A | 003E001 |  |  |  |

N/A = Not Applicable

| TABLE 5.14 UNIT ID 12 - Steam Boiler #2 |                                     |                   |                   |          |  |  |
|-----------------------------------------|-------------------------------------|-------------------|-------------------|----------|--|--|
| Equip ID                                | Equipment Description               | Installation Date | Control Device ID | Stack ID |  |  |
| SB2                                     | 41.4 million BTU/hr Steam Boiler #2 | 1980 (2003)       | N/A               | 003E002  |  |  |

N/A = Not Applicable

|          | TABLE 5.15 UNIT ID 13 - Born Oil Heater   |                   |          |         |  |  |  |  |
|----------|-------------------------------------------|-------------------|----------|---------|--|--|--|--|
| Equip ID | Equipment Description                     | Control Device ID | Stack ID |         |  |  |  |  |
| BORN     | 18 million BTU/hr Born T-66 Oil<br>Heater | 1972 (2001)       | N/A      | 003E003 |  |  |  |  |

N/A = Not Applicable (page updated 10/17/07)

| TABLE 5.16 UNIT ID 14 - Carotek Oil Heater |                                         |                   |          |         |  |  |
|--------------------------------------------|-----------------------------------------|-------------------|----------|---------|--|--|
| Equip ID                                   | Equipment Description                   | Control Device ID | Stack ID |         |  |  |
| CARO                                       | 28 million BTU/hr Carotek Oil<br>Heater | 1982 (2001)       | N/A      | 003E004 |  |  |

N/A = Not Applicable

## REDO TABLE 5.17 TO MATCH CHANGES IDENTIFIED IN FORM C (APPENDIX A),

| TABLE 5.17 UNIT ID 15 – G3 Film Line |                              |                   |                   |                                        |  |
|--------------------------------------|------------------------------|-------------------|-------------------|----------------------------------------|--|
| Equip ID                             | <b>Equipment Description</b> | Installation Date | Control Device ID | Stack ID                               |  |
| G3GC1                                | G3 Coater 1                  | 2008              | N/A               | 026E005                                |  |
| G3GC2                                | G3 Coater 2                  | 2008              | N/A               | 026E019                                |  |
|                                      |                              |                   |                   | 026E010-<br>016 Or                     |  |
| G3C                                  | G3 Oven                      | 2008              | N/A               | 026E010-<br>012 &<br>027, 028<br>& 016 |  |
| G3ASP1                               | G3 Aspirator 1               | 2008              | BH15              | 026E007                                |  |
| G3ASP2                               | G3 Aspirator 2               | 2008              | BH15              | 026E007                                |  |
| G3XT1                                | G3 Extruder 1                | 2008              | N/A               | 026E007                                |  |
| G3XT2                                | G3 Extruder 2                | 2008              | N/A               | 026E007                                |  |
| G3XT3                                | G3 Extruder 3                | 2008              | N/A               | 026E007                                |  |
| G3XT4                                | G3 Extruder 4                | 2008              | N/A               | 026E007                                |  |
| G3D                                  | G3 Pellet Dryer              | 2008              | BH15              | 026E007                                |  |
| G3H1                                 | G3 Resin Charging Hopper 1   | 2008              | BH15              | 026E007                                |  |

## 3M Company (Greenville Film Plant) TV-1200-0073 Page 22 of 42

(Lindated 8/27/09)

| (Updated 8/27/09)                    |                                                                     |                   |                   |                     |  |  |  |
|--------------------------------------|---------------------------------------------------------------------|-------------------|-------------------|---------------------|--|--|--|
| <u>IREDO TAE</u>                     | REDO TABLE 5.17 TO MATCH CHANGES IDENTIFIED IN FORM C (APPENDIX A). |                   |                   |                     |  |  |  |
| TABLE 5.17 UNIT ID 15 – G3 Film Line |                                                                     |                   |                   |                     |  |  |  |
| Equip ID                             | Equipment Description                                               | Installation Date | Control Device ID | Stack ID            |  |  |  |
| G3H2                                 | G3 Resin Charging Hopper 2                                          | 2008              | BH15              | 026E007             |  |  |  |
| G3H3                                 | G3 Resin Charging Hopper 3                                          | 2008              | BH15              | 026E007             |  |  |  |
| G3CW                                 | G3 Die Casting Wheel                                                | 2008              | N/A               | 026E021,<br>026E023 |  |  |  |
| G3FSGR1                              | G3 Floor Scrap Grinder 1                                            | 2008              | BH14              | 026E006             |  |  |  |
| G3FSGR2                              | G3 Floor Scrap Grinder 2                                            | 2008              | BH14              | 026E006             |  |  |  |
| G3FSGR3                              | G3 Floor Scrap Grinder 3                                            | 2008              | BH14              | 026E006             |  |  |  |
| G3FSGR4                              | G3 Floor Scrap Grinder 4                                            | 2008              | BH14              | 026E006             |  |  |  |
| G3ETGR1                              | G3 Edge Trim Grinder 1                                              | 2008              | BH14              | 026E006             |  |  |  |
| G3ETGR2                              | G3 Edge Trim Grinder 2                                              | 2008              | BH14              | 026E006             |  |  |  |
| G3ET                                 | G3 Edge Trim Airveying                                              | 2008              | BH14              | 026E006             |  |  |  |
| G3FS                                 | G3 Floor Scrap Airveying                                            | 2008              | BH14              | 026E006             |  |  |  |
| G3TL                                 | G3 Flake Truck Load                                                 | 2008              | BH14              | 026E006             |  |  |  |
| G3BL                                 | G3 Flake Box Load                                                   | 2008              | BH14              | 026E006             |  |  |  |
| G3FSILO1                             | Clear Flake Silo                                                    | 2008              | N/A               | N/A                 |  |  |  |
| G3FSILO2                             | Color Flake Silo                                                    | 2008              | N/A               | N/A                 |  |  |  |
| G3VSILO1                             | G3 Pellet Silo 1                                                    | 2008              | BH15              | 026H007             |  |  |  |
| G3VSILO2                             | G3 Pellet Silo 2                                                    | 2008              | BH15              | 026H007             |  |  |  |
| G3VSILO3                             | G3 Pellet Silo 3                                                    | 2008              | BH15              | 026H007             |  |  |  |
| G3VSILO4                             | G3 Pellet Silo 4                                                    | 2008              | BH15              | 026H007             |  |  |  |
| G3VSILO5                             | G3 Pellet Silo 5                                                    | 2008              | BH15              | 026H007             |  |  |  |
| G3MRTK1                              | G3 Mix Room Tank 1                                                  | 2008              | N/A               | 026E0030            |  |  |  |
| G3MRTK2                              | G3 Mix Room Tank 2                                                  | 2008              | N/A               | 026E0030            |  |  |  |
| G3MRTK3                              | G3 Mix Room Tank 3                                                  | 2008              | N/A               | 026E0030            |  |  |  |
| G3MRTK4                              | G3 Mix Room Tank 4                                                  | 2008              | N/A               | 026E0030            |  |  |  |
| G3MRSC1                              | G2 Mix Room Storage 1                                               | 2008              | N/A               | 026E0030            |  |  |  |
| G3MRSC2                              | G2 Mix Room Storage 2                                               | 2008              | N/A               | 026E0030            |  |  |  |
| G3MRSC3                              | G2 Mix Room Storage 3                                               | 2008              | N/A               | 026E0030            |  |  |  |
|                                      |                                                                     |                   |                   |                     |  |  |  |

G3MRH3 N/A = Not Applicable

G3MRH1

G3MRH2

2008

2008

2008

#### **EMISSION LIMITS AND STANDARDS** D.

G3 Mix Room Hood 1

G3 Mix Room Hood 2

G3 Mix Room Hood 3

PLEASE MATCH UNIT ID TO CHANGES IDENTIFIED IN FORM C (APPENDIX A).

N/A

N/A

N/A

026E0030

026E0030

026E0030

Table 5.18 contains summaries of emission unit emission limits and standards.

|        |                 | TABLE 5.18 EMISSION LIMITS AND STANDARDS |       |                     |                       |               |                     |  |
|--------|-----------------|------------------------------------------|-------|---------------------|-----------------------|---------------|---------------------|--|
| Ref. # | Unit ID         | Pollutant/<br>Standard                   | Limit | Reference<br>Method | Regulation            | State<br>Only | Condition<br>Number |  |
| 1      | 01: PP1,<br>PP2 | Opacity                                  | 20%   | 9                   | SC Reg 61-62.5, Std 4 | No            | 5.E.1               |  |

<sup>\*</sup>These are approximate installation dates. Before construction, the referenced equipment shall first obtain a construction permit from the Department. The Department may grant permission to proceed with minor alterations or additions without issuance of a permit when the Department determines that the alteration or addition will not increase the quantity and will not alter the character of the sources emissions (SC Regulation 61-62.1, Section II (A)(1)(a).

PLEASE ADD A REFERENCE NUMBER TO EACH ITEM IN THIS TABLE.

## 3M Company (Greenville Film Plant)

(Updated 8/27/09)

TV-1200-0073 PLEASE MATCH UNIT ID Page 23 of 42 TO CHANGES IDENTIFIED IN FORM C (APPENDIX A).

| $\forall$ | TABLE 5.18 EMISSION LIMITS AND STANDARDS                        |                                                           |                                  |                       |                                      |               |                     |
|-----------|-----------------------------------------------------------------|-----------------------------------------------------------|----------------------------------|-----------------------|--------------------------------------|---------------|---------------------|
| Ref. #    | Unit ID                                                         | Pollutant/<br>Standard                                    | Limit                            | Reference<br>Method   | Regulation                           | State<br>Only | Condition<br>Number |
| 2         | 01: RB,<br>EGT                                                  | Opacity                                                   | 40%                              | 9                     | SC Reg 61-62.5, Std 4                | No            | 5.E.2               |
| 3         | 01, 02                                                          | Group 2 Process Vent Batch Mass Input, Group 2 Wastewater | 3,504 batches/yr                 | 25/25A, 18            | 40 CFR 63, Subparts A and JJJ        | No            | 5.E.3               |
| 4         | 02: MEOH                                                        | Group 1<br>Storage Tank                                   | Emissions<br>Averaging, SSM      | N/A                   | 40 CFR 63, Subparts A and JJJ        | No            | 5.E.3               |
| 5         | 02: REGT,<br>MEOH,<br>EGR1,<br>MER1,<br>EGR2,<br>MER2,<br>VSILO | Opacity                                                   | 40%                              | 9                     | SC Reg 61-62.5, Std 4                | No            | 5.E.2               |
| 6         | 02: PC1,<br>PC2, PC3,<br>PC4,<br>ICR1,<br>ICR2,<br>RGDT         | Opacity                                                   | 20%                              | 9                     | SC Reg 61-62.5, Std 4                | No            | 5.E.1               |
| 7         | 02: MEAC                                                        | As Specified in Condition                                 | As Specified in Condition        | N/A                   | N/A                                  | N/A           | 5.E.4               |
| 8         | 02: VSILO                                                       | PM                                                        | 53.12 lb/hr                      | 5                     | SC Reg 61-62.5, Std 4                | No            | 5.E.5               |
| 9         | 03: EJT1                                                        | Opacity                                                   | 40%                              | 9                     | SC Reg 61-62.5, Std 4                | No            | 5.E.2               |
| 10        | 03: EJT2                                                        | Opacity                                                   | 20%                              | 9                     | SC Reg 61-62.5, Std 4                | No            | 5.E.1               |
| 11        | 01, 02, 03,<br>06                                               | Organic<br>HAPs                                           | LDAR                             | Method 21,<br>Sensory | 40 CFR 63, Subparts A,<br>H, and JJJ | No            | 5.E.16              |
| 12        | 04, 05<br>(Except<br>G2GR,<br>G2ET)                             | Opacity                                                   | 40%                              | 9                     | SC Reg 61-62.5, Std 4                | No            | 5.E.2               |
| 13        | 04                                                              | PM                                                        | 6.30 lb/hr                       | 5                     | SC Reg 61-62.5, Std 4                | No            | 5.E.5               |
| 14        | 04: G1TN                                                        | VOC                                                       | 2.9 lb VOC/<br>gallon of coating | 25                    | SC Reg 61-62.5, Std 5                | No            | 5.E.6               |
| 15        | 05: G2GR,<br>G2ET                                               | Opacity                                                   | 20%                              | 9                     | SC Reg 61-62.5, Std 4                | No            | 5.E.1               |
| 16        | 05                                                              | PM                                                        | 12.0 lb/hr                       | 5                     | SC Reg 61-62.5, Std 4                | No            | 5.E.5               |
| 17        | 05: G2PC,<br>G2GC,<br>G2C                                       | VOC                                                       | 2.9 lb VOC/<br>gallon of coating | 25                    | SC Reg 61-62.5, Std 5                | No            | 5.E.6               |
| 18        | 06: VEGT,<br>FOT1,<br>FOT2                                      | Opacity                                                   | 40%                              | 9                     | SC Reg 61-62.5, Std 4                | No            | 5.E.2               |
| 19        | 06: DMTT                                                        | Opacity                                                   | 20%                              | 9                     | SC Reg 61-62.5, Std 4                | No            | 5.E.1               |
| 20        | 07                                                              | Opacity                                                   | 20%                              | 9                     | SC Reg 61-62.5, Std 4                | No            | 5.E.1               |

PLEASE ADD A REFERENCE NUMBER TO EACH ITEM IN THIS TABLE.

3M Company (Greenville FLEASE MATCH UNIT ID PLEASE 10 CHANGES IDENTIFIED

IN FORM C (APPENDIX A).

(Updated 8/27/09)

**TABLE 5.18 EMISSION LIMITS AND STANDARDS** Ref. # Pollutant/ Reference State Condition **Unit ID** Limit Regulation Standard Method Only Number 21 07 PM 0.04 lb/hr 5 SC Reg 61-62.5, Std 4 5.E.5 No 22 08: FSILO, Opacity 40% 9 SC Reg 61-62.5, Std 4 No 5.E.2 PTZR, **RSILO** 23 08: RBLD, Opacity 20% 9 SC Reg 61-62.5, Std 4 No 5.E.1 **RVAC** 08 PM 24 11.89 lb/hr 5 SC Reg 61-62.5, Std 4 No 5.E.5 25 09, 10 Opacity 40% 9 SC Reg 61-62.5, Std 4 No 5.E.2 26 09 PM 27.63 lb/hr 5 SC Reg 61-62.5, Std 4 No 5.E.5 27 10 PM 34.24 lb/hr 5 SC Reg 61-62.5, Std 4 No 5.E.5 28 11-12 Opacity 20% 9 SC Reg 61-62.5, Std 1 No 5.E.7 29 11-12 PM  $0.6 \text{ lb}/10^6 \text{ BTU}$ 5 SC Reg 61-62.5, Std 1 No 5.E.8 (Each) 30 11-12  $SO_2$ 3.5 lb/10<sup>6</sup> BTU 6-6C SC Reg 61-62.5, Std 1 No 5.E.10 (Each) 31 < 0.05% Sulfur SC Reg. 61-62.1, 11, 12  $SO_2$ 6-6C, 19/6B No 5.E.11 Section II, Part H Content 32 11-12 SC Reg. 61-62.1,  $SO_2$ < 40 TPY 6-6C No 5.E.12 (Each) Section II, Part H 33 13-14 Opacity 9 20% SC Reg 61-62.5, Std 1 No 5.E.7 34 13-14 PM  $0.6 \, lb/10^6 \, BTU$ SC Reg 61-62.5, Std 1 No 5.E.8 35  $\leq 0.5\%$  Sulfur SC Reg. 61-62.1, 13-14  $SO_2$ 6-6C, 19/6B No 5.E.13 Content Section II, Part H 36 SC Reg. 61-62.1, 13-14  $SO_2$ < 40 TPY 6-6C No 5.E.14 Section II, Part H 37 1,098,950 Fuel Oil SC Reg. 61-62.1, 14 Gallons/Yr No. 2 6-6C 5.E.15 No Consumption Section II, Part H Fuel Oil 38 15 Opacity 20% 9 SC Reg 61-62.5, Std 4 No 5.E.1 39 15 PM 10.37 Lb/hr \* SC Reg 61-62.5, Std 4 No 5.E.5 40 No more than 5 percent of the organic HAP applied for each Organic month OR No HAP/Mass more than 4 of percent of the 40 CFR 63. 15 coating/Mass mass of coating Subpart JJJJ, 5.E.17 No of coating materials applied Sec 63.3320(b)(1)-(3) solids each for each month month OR No more than 20 percent of the mass of coating solids applied for each month

<sup>\*</sup>As Approved by BAQ

# PLEASE ENSURE THAT ALL UNITS REFERENCED IN 5.E CONDITIONS ARE UPDATED TO MATCH CHANGES PROPOSED IN FORM C (APPENDIX A).

### 3M Company (Greenville Film Plant) TV-1200-0073 Page 25 of 42 (Updated 8/27/09)

The maximum allowable emission limits above are derived from the various Federal and State regulations that govern the operation of this type of source. All applicable facility wide emission limits and corresponding regulations are listed above. Additional operating requirements which may be more stringent than those above are contained in Part 4.0, Part 6.0, and Part 7.0 of this permit.

#### E. EMISSION UNIT CONDITIONS

| Condition<br>Number | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.E.1               | (Units 01:PP1, PP2; 02: PC1, PC2, PC3, PC4, ICR1, ICR2, RGDT; 03:EJT2; 05:G2GR, G2ET; 06:DMTT; 07; 08:RBLD, RVAC; 15) In accordance with SC Regulation 61-62.5, Standard No. 4 - Emissions from Process Industries, Section IX - Visible Emissions (Where Not Specified Elsewhere), where construction or modification began after December 31, 1985, emissions (including fugitive emissions) shall not exhibit an opacity greater than 20%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5.E.2               | (Units 01:RB, EGT; 02: REGT, MEOH, EGR1, MER1, EGR2, MER2, VSILO; 03:EJT1; 04; 05 except G2GR & G2ET; 06:VEGT, FOT1, FOT2; 08:FSILO, PTZR, RSILO; 09; 10) In accordance with SC Regulation 61-62.5, Standard No. 4 - Emissions from Process Industries, Section IX - Visible Emissions (Where Not Specified Elsewhere), where construction or modification began on or before December 31, 1985, emissions (including fugitive emissions) shall not exhibit an opacity greater than 40%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5.E.3               | <ul> <li>(Units 01, 02) These units are subject to 40 CFR 63, Subparts A and JJJ. In accordance with \$63.1323(d) of Subpart JJJ, a batch process vent with annual emissions of TOC or organic HAP less than 11,800 kg/yr is considered a Group 2 batch process vent, and wastewater. The owner or operator of said batch process vent shall comply with the requirements in \$63.1322(f) or (g). This facility is complying with requirements of \$63.1322(g). In accordance with \$63.1322(g), the owner or operator shall: <ul> <li>Establish a batch mass input limitation that ensures emissions do not exceed 11,800 kg/yr of TOC or organic HAP. This facility has established the batch mass input limit of 3504 batch/yr.</li> <li>Over the course of the affected source's "year" (as specified in NOC), the owner or operator shall not charge a mass of HAP or material to the batch unit operation that is greater than 3504 batch/yr limit.</li> <li>The owner or operator shall comply with recordkeeping requirements specified in \$63.1326(d)(1), and reporting requirements in \$63.1327(a)(2), (b), and (c). These requirements are found in Section 6 of this permit.</li> <li>The owner/operator shall comply with \$63.1323(i) when process changes are made.</li> </ul> </li> <li>Storage tank MEOH is a Group 1 wastewater storage tank and is using emissions averaging provisions as control technology.</li> </ul> |
| 5.E.4               | (Unit 02) The Methanol After-Condenser (MEAC) is a voluntarily installed control device. Therefore, no limits on operation will be placed on the MEAC provided that 3M remains in compliance with all applicable Federal and State Regulations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.E.5               | (Units 02:VSILO; 04; 05; 07; 08, 09; 10; 15) In accordance with SC Regulation 61-62.5, Standard No. 4 - Emissions from Process Industries Section VIII - Other Manufacturing, particulate matter emissions shall be limited to the rate specified by use of the following equations: for process weight rates less than or equal to 30 tons per hour ( $E = 4.10P^{0.5}$ ) and for process weight rates greater than 30 tons per hour ( $E = 55.0P^{0.11}$ - 40) where $E =$ the allowable emission rate in pounds per hour and $P =$ process weight rate in tons per hour.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

PLEASE MERGE CONDITION 5.E.16 WITH CONDITION 5.E.3.

H

## 3M Company (Greenville Film Plant) TV-1200-0073

Page 27 of 42

PLEASE MERGE CONDITION 5.E.16 WITH CONDITION 5.E.3.

| Condition<br>Number | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.E.16              | (Units 01; 02; 03; 06) Except as provided for in paragraphs §63.1331(b) and (c), the owner/operator shall comply with the requirements of 40CFR63 Subpart H National Emission Standards For Organic Hazardous Air Pollutants From The Synthetic Organic Chemical Manufacturing Industry For Equipment Leaks. Equipment leaks subject to Subpart H shall follow the provisions for periods of startup, malfunction and process unit shutdown as defined in §63.161 of Subpart H. [§63.1310(j)]. Since these requirements are primarily monitoring, repair, record keeping, and reporting, requirements, they are given in Section 6.B of this permit. |
| 5.E.17              | (Unit 15) In accordance with §63.3320(b)(1)-(3) The facility must limit organic HAP emissions to the level specified in paragraph (b)(1), (2) or (3) of §63.3320.  (b)(1) No more than 5 percent of the organic HAP applied for each month (95 percent reduction) at existing affected sources; or  (b)(2) No more than 4 percent of the mass of coating materials applied for each month at existing affected sources; or                                                                                                                                                                                                                           |
|                     | (b)(3) No more than 20 percent of the mass of coating solids applied for each month at existing affected sources.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

## PLEASE ADD A REFERENCE NUMBER TO EACH ITEM IN THIS TABLE.

PART 6.0 MONITORING AND REPORTING REQUIREMENTS

[SC Regulation 61-62.1, Section II]; [SC Regulation 61-62.70.6(a)(3)(i)(B)]

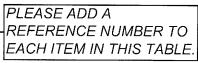
## A. MONITORING AND REPORTING

PLEASE MATCH UNIT ID TO CHANGES IDENTIFIED IN FORM C (APPENDIX A).

Table 6.1 contains summaries of the monitoring and reporting required of this facility.

| V      | V                 | 1                       | TABLE 6.1 MONI                  | TORING AND                       | REPORTING               | 3                      |                     |
|--------|-------------------|-------------------------|---------------------------------|----------------------------------|-------------------------|------------------------|---------------------|
| Ref. # | Unit ID           | Pollutant/<br>Parameter | Limit                           | Required<br>Monitoring           | Monitoring<br>Frequency | Reporting<br>Frequency | Condition<br>Number |
| 1      | Facility<br>Wide  | Production<br>VOC       | 1098.2 TPY                      | Production<br>Records            | Monthly                 | Semi-<br>Annual        | 6.B.1               |
| 2      | 02:<br>VSILO      | PM                      | 53.12 lb/hr                     | Pressure Drop                    | Weekly                  | Semi-<br>Annual        | 6.B.2,<br>6.B.3     |
| 3      | 02:<br>VSILO      | Opacity                 | 40%                             | Visual<br>Inspection             | Daily                   | Semi-<br>Annual        | 6.B.4               |
| 4      | 04: G1GR,<br>G1ET | PM                      | 6.30 lb/hr                      | Pressure Drop                    | Weekly                  | Semi-<br>Annual        | 6.B.2,<br>6.B.3     |
| 5      | 04: G1GR,<br>G1ET | Opacity                 | 40%                             | Visual<br>Inspection             | Daily                   | Semi-<br>Annual        | 6.B.4               |
| 6      | 04, 05            | VOC                     | 2.9 lb VOC/gallon<br>of coating | Gallons of<br>Coating<br>Applied | Daily                   | Semi-<br>Annual        | 6.B.6               |
| 7      | 05: G2GR,<br>G2ET | PM                      | 12.0 lb/hr                      | Pressure Drop                    | Weekly                  | Semi-<br>Annual        | 6.B.2,<br>6.B.3     |
| 8      | 05: G2GR,<br>G2ET | Opacity                 | 20%                             | Visual<br>Inspection             | Daily                   | Semi-<br>Annual        | 6.B.4               |

## PLEASE ADD A REFERENCE NUMBER TO EACH ITEM IN THIS TABLE.


3M Company (Greenville Film Plant)

TV-1200-0073
Page 28 of 42

CHANGES IDENTIFIED IN FORM C

|  | (APPENDIX A | ١) |
|--|-------------|----|
|--|-------------|----|

| $\forall$ |                                      | 7                                     | ABLE 6.1 MONI                 | TORING AND                               | REPORTING                                 | 3                      |                                                    |
|-----------|--------------------------------------|---------------------------------------|-------------------------------|------------------------------------------|-------------------------------------------|------------------------|----------------------------------------------------|
| Ref.#     | Unit ID                              | Pollutant/<br>Parameter               | Limit                         | Required<br>Monitoring                   | Monitoring<br>Frequency                   | Reporting<br>Frequency | Condition<br>Number                                |
| 9         | 07                                   | PM                                    | 0.04 lb/hr                    | Pressure Drop                            | Weekly                                    | Semi-<br>Annual        | 6.B.2,<br>6.B.3                                    |
| 10        | 07,<br>08:RBLD,<br>RVAC              | Opacity                               | 20%                           | Visual<br>Inspection                     | Weekly                                    | Semi-<br>Annual        | 6.B.5                                              |
| 11        | 08:RBLD,<br>RVAC,<br>FSILO,<br>RSILO | PM                                    | 11.89 lb/hr                   | Pressure Drop                            | Weekly                                    | Semi-<br>Annual        | 6.B.2,<br>6.B.3                                    |
| 12        | 08:<br>FSILO,<br>RSILO               | Opacity                               | 40%                           | Visual<br>Inspection                     | Daily                                     | Semi-<br>Annual        | 6.B.4                                              |
| 13        | 9                                    | PM                                    | 27.63 lb/hr                   | Pressure Drop                            | Weekly                                    | Semi-<br>Annual        | 6.B.2,<br>6.B.3                                    |
| 14        | 10                                   | PM                                    | 34.24 lb/hr                   | Pressure Drop                            | Weekly                                    | Semi-<br>Annual        | 6.B.2,<br>6.B.3                                    |
| 15        | 9, 10                                | Opacity                               | 40%                           | Visual<br>Inspection                     | Daily                                     | Semi-<br>Annual        | 6.B.4                                              |
| 16        | 11-12                                | Opacity                               | 20%                           | Visual<br>Inspection                     | Daily (when burning No. 2 Fuel Oil)       | Semi-<br>Annual        | 6.B.7                                              |
| 17        | 11-12                                | SO <sub>2</sub>                       | < 40 TPY                      | Fuel<br>Consumption                      | Daily                                     | Semi-<br>Annual        | 6.B.8                                              |
| 18        | 11-12                                | Sulfur<br>Content                     | < 0.05%                       | Supplier<br>Certification                | Each<br>Shipment                          | Semi-<br>Annual        | 6.B.8                                              |
| 19        | 13-14                                | Opacity                               | 20%                           | Visual<br>Inspection                     | Daily (when<br>burning No. 2<br>Fuel Oil) | Semi-<br>Annual        | 6.B.7                                              |
| 20        | 13-14                                | Sulfur<br>Content                     | < 0.5%                        | Supplier<br>Certification                | Each<br>Shipment                          | Semi-<br>Annual        | 6.B.9                                              |
| 21        | 14                                   | Fuel Oil<br>Consumption               | 1,098,950 gal/yr              | As Specified                             | As Specified                              | Semi-<br>Annual        | 6.B.10                                             |
| 22        | 01, 02                               | Group 2 Process Vent Batch Mass Input | 3,504 batches/yr              | As Specified                             | As Specified                              | As<br>Specified        | 6.B.11                                             |
| 23        | 02:<br>МЕОН                          | Group 1<br>Wastewater<br>Tank         | As Specified in<br>Condition  | Emissions<br>Averaging Plan,<br>SSM Plan | As Specified                              | As<br>Specified        | 6.B.11                                             |
| 24        | 01-03, 06                            | Organic HAP                           | As Specified in<br>Conditions | As Specified in<br>Conditions            | As Specified in Conditions                | Semi-<br>Annual        | 6.B.12,<br>6.B.13,<br>6.B.14,<br>6.B.15,<br>6.B.16 |
| 25        | 15                                   | Opacity                               | 20%                           | Visual<br>Inspection                     | Daily                                     | Semi-<br>Annual        | 6.B.4                                              |
| 26        | 15                                   | PM                                    | 10.37 Lb/hr                   | Pressure Drop                            | Weekly                                    | Semi-<br>Annual        | 6.B.2,<br>6.B.3                                    |



## 3M Company (Greenville Film Plant) TV-1200-0073 Page 29 of 42 (Updated 8/27/09)

|        |         |                                                                              | <i>TABLE 6.1</i> MONI                                                                                                                                                                                                              | TORING AND                       | REPORTING               | 3                      |                     |
|--------|---------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------|------------------------|---------------------|
| Ref. # | Unit ID | Pollutant/<br>Parameter                                                      | Limit                                                                                                                                                                                                                              | Required<br>Monitoring           | Monitoring<br>Frequency | Reporting<br>Frequency | Condition<br>Number |
| 27     | 15      | Organic<br>HAP/Mass of<br>coating/Mass<br>of coating<br>solids each<br>month | No more than 5 percent of the organic HAP applied for each month OR No more than 4 percent of the mass of coating materials applied for each month OR No more than 20 percent of the mass of coating solids applied for each month | Gallons of<br>Coating<br>Applied | Daily                   | Semi-<br>Annual        | 6.B17-<br>6.B.25    |

## B. MONITORING AND REPORTING CONDITIONS

| Condition<br>Number | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.B.1               | (Facility Wide) The owner/operator must record the actual monthly production rates and maintain these records on-site for a period of at least five (5) years. These records shall include the total amount of each material used, the VOC content in percent by weight of each material. VOC emission shall be calculated on a MONTHLY basis, and a twelve month rolling sum shall be calculated for total VOC emissions. The twelve month rolling sum for VOC from both Tape and Film Plant combined shall be less than 1098.2 tons/yr. The owner/operator shall maintain all records, including material purchase orders, invoices, and material data sheets, etc. for a period of at least five (5) years from the date generated, and shall make these records available to Department personnel upon request. Semi-Annual reports including all recorded parameters and calculated values shall be submitted to the Manager of the Technical Management Section, Bureau of Air Quality postmarked no later than 30 calendar days after the end of the reporting period. An algorithm, including example calculations and emission factors, explaining the method used to determine VOC rate shall be included in the initial report. Subsequent submittals of the algorithm and example calculations are unnecessary, unless the method of calculation is found to be unacceptable by the Bureau or if the facility changes the method of calculating emissions and/or changes emission factors. |

## 3M Company (Greenville Film Plant) TV-1200-0073 Page 30 of 42

| 6 | U | pd | ate | d 8 | /2 | 7/ | 19 |
|---|---|----|-----|-----|----|----|----|
|   |   |    |     |     |    |    |    |

| Condition<br>Number | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.B.2               | (Units 02, 04, 05, 07, 08, 09, 10, 15) The owner/operator shall install, operate and maintain pressure drop gauge(s) on each module of the baghouse(s). All pressure drop gauges shall be readily accessible for verification by operating personnel and Department personnel (i.e. on ground level or easily accessible roof level). Pressure drop readings shall be recorded weekly during source operation and shall be made available to Department personnel upon request. In addition, the baghouse cleaning systems, dust collector hoppers, and conveying systems should be check on a weekly basis for proper operation. The pressure drop readings shall be maintained in logs (written or electronic (i.e., computerized data system)), along with any corrective action taken when deviations occur. Operational ranges for the monitored parameters shall have been established to provide a reasonable assurance of compliance. from stack test data, vendor certification, and/or operational history and visual inspections, which demonstrate the proper operation of the equipment in compliance. These ranges, with supporting documentation and quality assurance procedures, must have been submitted to the Bureau for approval as specified in previous Part 70 Operating Permit. The owner/operator shall operate these units within the approved ranges. The operating ranges may be updated using this procedure, following Bureau approval. Baghouse monitoring data shall be maintained on site for a period of at least five (5) years from the date generated and shall be made available to Department personnel upon request. Each incidence of operation outside these operational ranges, including date and time, cause, and corrective action taken, shall be recorded and kept on site for five (5) years. Exceedance of operational range shall not be considered a violation of an emission limit of this permit, unless the exceedance is also accompanied by other information demonstrating that a violation of an emission limit has taken place. Semi-Annual reports of these inci |
| 6.B.3               | Any alternative method for monitoring baghouse performance must be preapproved by the Bureau and shall be incorporated into the permit as set forth in SC Regulation 61-62.70.7.  (Units 02, 04, 05, 07, 08, 09, 10, 15) The owner/operator shall maintain on file all measurements including continuous monitoring system or monitoring device performance measurements; all continuous monitoring system performance evaluations; all continuous monitoring system or monitoring device calibration checks; adjustments and maintenance performed on these systems or devices; and all other information required in a permanent form suitable for inspection by Department personnel for at least five (5) years following the date of such measurement, maintenance, report and record.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6.B.4               | (Units 02, 04, 05, 08, 09, 10, 15) The permittee shall perform a visual inspection on a daily basis. Visual Inspection means a qualitative observation of opacity during daylight hours where the inspector records results in a log, noting color, duration, density (heavy or light), cause and corrective action taken for any abnormal emissions. The observer does not need to be certified to conduct valid visual inspections. However, at a minimum, the observer should be trained and knowledgeable about the effects on visibility of emissions caused by background contrast, ambient lighting, and observer position relative to lighting, wind, and the presence of uncombined water. No periodic monitoring for opacity will be required during periods of burning natural gas or propane only. Logs shall be kept to record all visual inspections, including cause and corrective action taken for any abnormal emissions and visual inspections from date of recording. The logs shall be maintained for a period of five (5) years and be made available to the Department upon request. The owner/operator shall submit Semi-Annual reports to the Manager of the Technical Management Section, Bureau of Air Quality postmarked no later than 30 calendar days after the end of the reporting period.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

## 3M Company (Greenville Film Plant) TV-1200-0073 Page 31 of 42 (Updated 8/27/09)

| Condition<br>Number | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | (page updated 11/16/06)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6.B.5               | (Units 07, 08:RBLD & RVAC) The permittee shall perform a visual inspection on a weekly basis. Visual Inspection means a qualitative observation of opacity during daylight hours where the inspector records results in a log, noting color, duration, density (heavy or light), cause and corrective action taken for any abnormal emissions. The observer does not need to be certified to conduct valid visual inspections. However, at a minimum, the observer should be trained and knowledgeable about the effects on visibility of emissions caused by background contrast, ambient lighting, and observer position relative to lighting, wind, and the presence of uncombined water. No periodic monitoring for opacity will be required during periods of burning natural gas or propane only. Logs shall be kept to record all visual inspections, including cause and corrective action taken for any abnormal emissions and visual inspections from date of recording. The logs shall be maintained for a period of five (5) years and be made available to the Department upon request. The owner/operator shall submit Semi-Annual reports to the Manager of the Technical Management Section, Bureau of Air Quality postmarked no later than 30 calendar days after the end of the reporting period.                                                                                |
| 6.B.6               | (Units 04, 05) VOC emissions shall not exceed 2.9 pounds per gallon (0.35 kilograms per liter) of coating, excluding water and exempt solvents, delivered to the web coating applicator system. To comply with this regulation, coating usage shall be tracked through production recordkeeping system. A 24-hour weighted average can be used for compliance with this limit. Readings shall be recorded daily during source operation and shall be made available to Department personnel upon request. The owner/operator shall also keep records detailing all activities relating to any compliance schedule under Part D of the regulation and records of all compliance testing under Part E. These records shall be maintained for a period of five (5) years and be made available to the Department and US Environmental Protection Agency upon request. The owner/operator shall submit Semi-Annual reports to the Manager of the Technical Management Section, Bureau of Air Quality postmarked no later than 30 calendar days after the end of the reporting period.                                                                                                                                                                                                                                                                                                                  |
| 6.B.7               | (Units 11-14) The permittee shall perform a visual inspection on a daily basis when burning fuel other than natural gas or propane. Visual Inspection means a qualitative observation of opacity during daylight hours where the inspector records results in a log, noting color, duration, density (heavy or light), cause and corrective action taken for any abnormal emissions. The observer does not need to be certified to conduct valid visual inspections. However, at a minimum, the observer should be trained and knowledgeable about the effects on visibility of emissions caused by background contrast, ambient lighting, and observer position relative to lighting, wind, and the presence of uncombined water. No periodic monitoring for opacity will be required during periods of burning natural gas or propane only. Logs shall be kept to record all visual inspections, including cause and corrective action taken for any abnormal emissions and visual inspections from date of recording. The logs shall be maintained for a period of five (5) years and be made available to the Department upon request. The owner/operator shall submit Semi Appual reports to the Meanage of the Tephrical Meanage of the Department upon request. The owner/operator shall submit Semi Appual reports to the Meanage of the Tephrical Meanage of the Department upon request. |

submit Semi-Annual reports to the Manager of the Technical Management Section, Bureau of Air Quality

postmarked no later than 30 calendar days after the end of the reporting period.

## 3M Company (Greenville Film Plant) TV-1200-0073 Page 32 of 42 (Updated 8/27/09)

| Condition |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number    | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6.B.8     | (Units 11-12) These sources are permitted to burn only natural gas and No. 2 Fuel oil as fuel. The owner/operator shall record daily fuel oil, natural gas, etc. consumption, including fuel grade and supplier certification of sulfur content of the fuel. The owner/operator shall calculate SO <sub>2</sub> , emissions on a twelve month rolling sum. The calculations shall include sulfur content, fuel consumption and Bureau approved emission factors. SO <sub>2</sub> emissions shall be less than 40 tons/year. Fuel oil sulfur content shall be less than or equal to 0.05% percent by weight. Acceptable fuel oil certification can be ensured by following Department guidance entitled "Guidance For Fuel Oil Certifications" issued on May 19, 2000 and any subsequent revisions. Fuel oil supplier certification shall be obtained for each batch of oil received and stored on site. Records of fuel consumption and fuel oil certification shall be maintained on site for a period of at least five (5) years from the date generated and shall be made available to a Department representative upon request. Semi-annual reports of fuel consumption and fuel oil certification shall be submitted to the Manager of the Technical Management Section, Bureau of Air Quality postmarked no later than 30 calendar days after the end of the reporting period.                                                                                         |
| 6.B.9     | (Units 13-14) These sources are permitted to burn only natural gas and No. 2 Fuel oil as fuel. The owner/operator shall record daily fuel oil, natural gas, etc. consumption, including fuel grade and supplier certification of sulfur content of the fuel. Fuel oil sulfur content shall be less than or equal to 0.5% percent by weight. Acceptable fuel oil certification can be ensured by following Department guidance entitled "Guidance For Fuel Oil Certifications" issued on May 19, 2000 and any subsequent revisions. Fuel oil supplier certification shall be obtained for each batch of oil received and stored on site. Records of fuel consumption and fuel oil certification shall be maintained on site for a period of at least five (5) years from the date generated and shall be made available to a Department representative upon request. Semi-annual reports of fuel oil certification shall be submitted to the Manager of the Technical Management Section, Bureau of Air Quality postmarked no later than 30 calendar days after the end of the reporting period.                                                                                                                                                                                                                                                                                                                                                                              |
| 6.B.10    | (Unit 14) This source is permitted to burn 1,098,950 gallons/year of No. 2 Fuel oil. The owner/operator must record fuel oil consumption daily and calculate yearly fuel oil consumption on a twelve month rolling sum. Fuel oil sulfur content shall be less than or equal to 0.5% percent by weight. Acceptable fuel oil certification can be ensured by following Department guidance entitled "Guidance For Fuel Oil Certifications" issued on May 19, 2000 and any subsequent revisions. Fuel oil supplier certification shall be obtained for each batch of oil received and stored on site. Records of fuel oil consumption and fuel oil certification shall be maintained on site for a period of at least five (5) years from the date generated and shall be made available to a Department representative upon request. Semi-annual reports including fuel oil certification, fuel oil consumption, and all recorded parameters and calculated values shall be submitted to the Manager of the Technical Management Section, Bureau of Air Quality postmarked no later than 30 calendar days after the end of the reporting period.                                                                                                                                                                                                                                                                                                                               |
| 6.B.11    | (Units 01, 02) For group 2 batch process vent complying with §63.1322(g) should keep records designating the established batch mass input limitation (3,504 batches/yr) required by §62.1322(g)(1) and specified in §63.1325(g). Also keep records specifying the mass of HAP or material charged to the batch unit operation.  Whenever a process change is made that causes a Group 2 batch process vent to become Group 1, notify the Administrator and submit a description of the process change within 180 days after the process change is made or with the Periodic Report (whichever is later) and comply with Group 1 provisions. If the process change is made to cause the annual emission less than the level specified in 5.E.3 for which the owner/operator has chosen to comply with or greater than or equal to the limit but remains Group 2 vent, submit a report within 180 days after the process change is made or with next Periodic Report (whichever is later) with description of the process change, and the batch mass input limitation determined in accordance with §63.1322(f)(1).  The facillity is using emissions averaging as control technology for the MEOH tank (Group 1 wastewater storage tank). In accordance with emissions averaging provisions, the facility shall comply with all applicable requirements of §63.1332.  These notification requirements do not supersede construction permitting requirements where applicable. |

maintained onsite, available for inspection when requested.

## 3M Company (Greenville Film Plant) TV-1200-0073 Page 33 of 42

| Condition<br>Number | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | (Units 01-03, 06) The owner/operator shall comply with the requirements of Subpart H of 40 CFR 63 with the differences noted in §63.1331, a(1) through a(13). The requirements of 40 CFR63 Subpart H are summarized below. These requirements are not all inclusive and the owner/operator shall operate this unit in compliance with Subpart JJJ. (Equipment and Equipment leak are defined in §63.1312)                                                                                                                                                                                                |
|                     | Pumps (§63.163) in Light Liquid Service:  Each pump shall be monitored monthly to detect leaks as specified in b(1). Instrument readings should be 5000 ppm or greater. Indications of liquids dripping from packaging glands for pumps in ethylene glycol service where the pump seal is designed to weep fluid shall not be considered to be a leak. Ethylene glycol must be captured in a catchpan and returned to process.                                                                                                                                                                           |
| 6.B.12              | Leak shall be repaired as soon as practicable but no later than 15 calendar days. First attempt, made no later than 5 calendar days after leak is detected (tightening of packing gland nuts, ensuring that seal flush is operating at design pressure & temp.                                                                                                                                                                                                                                                                                                                                           |
|                     | Exemption: Dual mechanical seal systems with barrier fluid system if the requirements in paragraphs (e)-(j).  Compressors (§63.164):                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     | Equipped with seal system that includes barrier fluid system and that prevents leakage of process fluid except as provided in §63.162(b) and paragraphs (h) and (i) of §63.164. Each compressor seal system shall comply with paragraph (b) of §63.164. The barrier shall not be in light liquid service and shall be equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both.                                                                                                                                                                                 |
|                     | Sensor shall be observed daily or shall be equipped with an alarm unless its located within boundary of an unmanned plant site. Owner/operator shall determine, based on design and operating experience, a criterion that indicates failure of system. Failure of system is considered to be a leak. It should be repaired as soon as practicable, but no later than 15 calendar days. First attempt, made no later than 5 calendar days after leak is detected. Exemption: If equipped with closed vent system to capture and transport leakage back to process, fuel gas system, or                   |
|                     | control device. Also if reading is less than 500 ppm above background (measured by §63.180c and tested for compliance initially upon designation, annually, and upon request.                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                     | Pressure Relief Devices in Gas/Vapor Service (§63.165):  Each pressure relief device shall be operated with an instrument reading of less than 500 ppm above background except during pressure releases (as specified in paragraph (b)). After pressure release, the device shall be returned to conditions indicating 500 ppm above background as soon as practicable, but no later than 5 calendar days after each release. No later than 5 calendar days after bringing the device back to the conditions stated above, the device shall be monitored to confirm the conditions indicated.            |
|                     | Exemption: Any pressure relief device that is routed to a process or fuel gas system or equipped with a closed vent system capable of capturing and transporting leakage from device to a control device is exempt. Any device that is equipped with a rupture disk upstream of the pressure relief device is exempt provided the owner/operator complies with the following: after each pressure release, a rupture disk shall be installed upstream of the pressure relief device as soon as practicable, but no later than 5 calendar days after each pressure release except as provided in §63.171. |
|                     | Sampling Connection Systems (§63.166):  Equipped with a closed-purge, closed-loop, or closed-vent system. Gases displaced during filling of sample container are not required to be collected. These systems shall return purged process fluid directly to process line, or collect and recycle the purged process fluid to a process, or be designed and operated to capture and transport the                                                                                                                                                                                                          |
|                     | purged fluid to a control device that complies with §63.172, or collect, store, and transport fluid as specified in paragraph (b)(4).  Exemption: In-situ sampling systems and sampling systems without purges.                                                                                                                                                                                                                                                                                                                                                                                          |
|                     | Open-Ended Valves or Lines (§63.167): Equipped with a cap, blind flange, plug, or second valve that seals the open end at all times except during operations                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     | requiring process fluid flow through the open-ended valve or line, or during maintenance or repair. For those equipped with second valve, the process fluid end has to be closed before the second valve is closed. When double block and bleed system is used, the bleed valve or line may remain open during operations that require venting the line between the block valves but shall comply with the first sentence under open-ended valve or lines. Exemption: Ones designed to open automatically in the event of process upset or an emergency shutdown. Ones                                   |
| 6.B.12<br>(cont'd)  | containing materials which would automatically polymerize or would present an explosion, serious overpressure, or other safety hazard if capped or equipped with a double block and bleed system.                                                                                                                                                                                                                                                                                                                                                                                                        |
|                     | Valves in Gas/Vapor Service and in Light Liquid Service (§63.168):  Monitor all valves to detect leaks by method specified in §63.180(b) and instrument reading should be 500 ppm or greater. Ones with $\geq 2\%$ leakage, monitor once/month or implement quality improvement                                                                                                                                                                                                                                                                                                                          |

## 3M Company (Greenville Film Plant) TV-1200-0073 Page 34 of 42

| Condition<br>Number | Conditions                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                     | every 2 que shall be ca as practical detected. Verepair.  Pumps, Varieta Devidence of instrument polymeriz systems is but no later Surge Co. If not route shall be ecor receiver. | harters. Ones with < 0.5% leak alculated using procedure in parable, but no later than 15 calendar. When a leak has been repaired, the alves, Connectors, and Agitatorices in Liquid Service (§63.169) by any method such as visual, a sof a potential leak, monitor was treading of 10,000 ppm or gration monomers, 2,000 ppm or measured, a leak is detected. In than 15 calendar days. First attemental Vessels and Bottoms Red back to the process and mee quipped with a closed-vent system. | audible, olfactory or any other method for detection of leak. If within 5 calendar days by method specified in §63.180(b). If reater for agitators, 5,000 ppm or greater for pumps handling or greater for all other pumps, or 500 ppm or greater for other When leak is detected, it should be repaired as soon as practicable, empt, made no later than 5 calendar days after leak is detected. |  |  |  |
|                     |                                                                                                                                                                                   | 03, 06) Other requirements a                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Requirements If infeasible without shutdown (see paragraphs (a)-(e)) Condenser 95% or greater efficiency or an exit                                                                                                                                                                                                                                                                               |  |  |  |
|                     | 63.173                                                                                                                                                                            | Control Devices  Agitators in Gas/Vapor Service and Light Liquid                                                                                                                                                                                                                                                                                                                                                                                                                                  | concentration of 20 ppm. Initial inspection and annual inspection for leaks.  Monitor monthly for leaks by method in §63.180(b). >10,000 ppm, leak is detected. Visual inspection weekly for liquids                                                                                                                                                                                              |  |  |  |
|                     | 63.174                                                                                                                                                                            | Service  Connectors in Gas/Vapor Service and In Light                                                                                                                                                                                                                                                                                                                                                                                                                                             | dripping (=leak). Repair requirements are same as in 6.B.13  Exemptions are in (d) – (j) of this section.  Monitor for leaks by method in §63.180(b). >500 ppm, leak is detected. Monitoring frequency is outlined in part (b)                                                                                                                                                                    |  |  |  |
| 6.B.13              | 63.175                                                                                                                                                                            | Liquid Service  Quality Improvement                                                                                                                                                                                                                                                                                                                                                                                                                                                               | of this section. Repair requirements are same as in 6.B.13. Exemptions are in (f) – (h) of this section.  Refer to this section of the Subpart                                                                                                                                                                                                                                                    |  |  |  |
|                     | 63.176                                                                                                                                                                            | Program for Valves  Quality Improvement  Program for Pumps                                                                                                                                                                                                                                                                                                                                                                                                                                        | Refer to this section of the Subpart                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                     | 63.177                                                                                                                                                                            | Alternative Means of Emission Limitation: General                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Refer to this section of the Subpart                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                     | 63.178                                                                                                                                                                            | Alternative Means of<br>Emission Limitation: Batch<br>Processes                                                                                                                                                                                                                                                                                                                                                                                                                                   | Refer to this section of the Subpart                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                     | 63.179                                                                                                                                                                            | Alternative Means of<br>Emission Limitation:<br>Enclosed-Vented Process<br>Units                                                                                                                                                                                                                                                                                                                                                                                                                  | Refer to this section of the Subpart                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| 6.B.14              | subject to                                                                                                                                                                        | Subpart H may keep one reco                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OCFR63 Subpart H: Owner/operator of more than one unit ordkeeping system but have to identify each record by process site and readily accessible. The owner/operator shall record the                                                                                                                                                                                                             |  |  |  |

## 3M Company (Greenville Film Plant) TV-1200-0073 Page 35 of 42

## 3M Company (Greenville Film Plant) TV-1200-0073 Page 36 of 42

| Condition<br>Number | Conditions                                                                                                                                                                               |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mamper              | (Units 01-03, 06) <b>Reporting for 40CFR63 Subpart H:</b> Semiannual reports shall be submitted with the                                                                                 |
|                     | following information:                                                                                                                                                                   |
|                     | (1) Number of valves for which leaks were detected, percent leakers, and total number monitored;                                                                                         |
|                     | number of valves for which leaks were not repaired, identifying number of those that are                                                                                                 |
|                     | determined to be nonrepairable;                                                                                                                                                          |
|                     | (2) Number of pumps for which leaks were detected, percent leakers, and total number monitored;                                                                                          |
|                     | number of pumps for which leaks were not repaired;                                                                                                                                       |
|                     | (3) Number of compressors for which leaks were detected and number for which leaks were not                                                                                              |
|                     | repaired;                                                                                                                                                                                |
|                     | (4) Number of agitators for which leaks were detected and number for which leaks were not                                                                                                |
|                     | repaired;                                                                                                                                                                                |
|                     | (5) Number of connectors for which leaks were detected, percent leakers, and total number monitored; number of connectors for which leaks were not repaired, identifying number of those |
| 6.B.15              | that are determined to be nonrepairable;                                                                                                                                                 |
| 0.0.13              | (6) Explain any delay of repairs and where appropriate, why process unit shutdown was infeasible;                                                                                        |
|                     | (7) Results of all monitoring to show compliance with §63.164(i), §63.165(a), and §63.172(f)                                                                                             |
|                     | conducted within the semiannual reporting period;                                                                                                                                        |
|                     | (8) If applicable, initiation of monthly monitoring program under §63.168(d)(1)(i) or quality                                                                                            |
|                     | improvement program;                                                                                                                                                                     |
|                     | (9) If applicable, notification of change in connector monitoring alternatives;                                                                                                          |
|                     | (10) If applicable, compliance option that has been selected under §63.172(n);                                                                                                           |
|                     | (11) If electing to meet requirements of alternative means emission limitation for batch processes,                                                                                      |
|                     | report shall include batch product process equipment train ID, number of pressure tests                                                                                                  |
|                     | conducted, number of tests where the equipment train failed pressure test, explain any delay of repair, and results of all monitoring to determine compliance with §63.172(f);           |
|                     | (12) Any revisions to items reported in earlier NOC Status, if the method of compliance has changed                                                                                      |
|                     | since last report.                                                                                                                                                                       |
|                     | (Units 01-03, 06) Recordkeeping and Reporting for 40CFR63 Subpart JJJ (§63.1335): Keep records                                                                                           |
|                     | and reports required by §63.1335 for at least 5 years unless copies were submitted to the appropriate                                                                                    |
|                     | EPA Regional Office. Develop and implement SSM plan as specified in §63.1335(b) unless the emission                                                                                      |
|                     | points pertain solely to Group 2. Semiannual SSM reports shall be submitted on the same schedule as                                                                                      |
|                     | periodic reports required by (e)(6) of §63.1335. Owners/operators required to keep continuous records                                                                                    |
|                     | shall keep records as specified in (d)(1)-(d)(7) unless an alternative system has been requested and                                                                                     |
| 6.B.16              | approved. Reports and notifications required by Subpart A are listed in Table 1 of §63.1335. All reports                                                                                 |
| 0.6.10              | required are listed in Table 9 of §63.1335.  If the owner/operator has elected to monitor a different parameter than specified in §63.1321 for batch                                     |
|                     | process vents shall submit information specified in (f)(1) through (f)(3) and retain these records for a                                                                                 |
|                     | period of 5 years. They may also request approval to use alternative continuous monitoring and                                                                                           |
|                     | recordkeeping provisions in accordance with $(g)(1)$ through $(g)(4)$ .                                                                                                                  |
|                     | The owner/operator may implement the recordkeeping requirements specified in (h)(1) or (h)(2) as                                                                                         |
|                     | alternatives to the continuous operating parameter monitoring and recordkeeping provisions that would                                                                                    |
|                     | otherwise apply by §63.1335.                                                                                                                                                             |

## 3M Company (Greenville Film Plant) TV-1200-0073 Page 37 of 42

| AL. | ndatad | 9/27/00 |
|-----|--------|---------|
| (U  | paatea | 8/27/09 |

| Condition |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number    | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6.B.17    | (Unit ID 15) In accordance with §63.3360(c) Organic HAP content. If the owner/operator determines compliance with the emission standards in §63.3320 by means other than determining the overall organic HAP control efficiency of a control device, the owner/operator must determine the organic HAP mass fraction of each coating material "as-purchased" by following one of the procedures in paragraphs (c)(1) through (3) of §63.3360, and determine the organic HAP mass fraction of each coating material "asapplied" by following the procedures in paragraph (c)(4) of §63.3360. If the organic HAP content values are not determined using the procedures in paragraphs (c)(1) through (3) of §63.3360, the owner or operator must submit an alternative test method for determining their values for approval by the Administrator in accordance with §63.7(f). The recovery efficiency of the test method must be determined for all of the target organic HAP and a correction factor, if necessary, must be determined and applied.                                                                                                                                                                                                                                                                                             |
| 6.B.18    | (Unit ID 15) In accordance with §63.3360 (d) <i>Volatile organic and coating solids content</i> . If the owner/operator determines compliance with the emission standards in §63.3320 by means other than determining the overall organic HAP control efficiency of a control device and you choose to use the volatile organic content as a surrogate for the organic HAP content of coatings, the owner/operator must determine the as-purchased volatile organic content and coating solids content of each coating material applied by following the procedures in paragraph (d)(1) or (2) of §63.3360, and the as-applied volatile organic content and coating solids content of each coating material by following the procedures in paragraph (d)(3) of §63.3360.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6.B.19    | (Unit ID 15) In accordance with §63.3360(g) <i>Volatile matter retained in the coated web or otherwise not emitted to the atmosphere.</i> The owner/operator may choose to take into account the mass of volatile matter retained in the coated web after curing or drying or otherwise not emitted to the atmosphere when determining compliance with the emission standards in §63.3320. If the owner/operator chooses this option, they must develop a testing protocol to determine the mass of volatile matter retained in the coated web or otherwise not emitted to the atmosphere and submit this protocol to the Administrator for approval. The owner/operator must submit this protocol with the facility's site-specific test plan under §63.7(f). If the owner/operator intends to take into account the mass of volatile matter retained in the coated web after curing or drying or otherwise not emitted to the atmosphere and demonstrate compliance according to §63.3370(c)(3), (c)(4), (c)(5), or (d), then the test protocol submitted must determine the mass of organic HAP retained in the coated web or otherwise not emitted to the atmosphere. Otherwise, compliance must be shown using the volatile organic matter content as a surrogate for the HAP content of the coatings.                                     |
| 6.B.20    | (Unit ID 15) In accordance with §63.3370(a)(1) If the owner/operator chooses to demonstrate compliance by use of "as-purchased" compliant coating materials, then the owner/operator must demonstrate that (i) each coating material used does not exceed 0.04 kg organic HAP per kg coating material as purchased, using the procedures in §63.3370(b); OR (ii) each coating material does not exceed 0.2 kg organic HAP per kg coating solids as purchased, using the procedures in §63.3370(b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6.B.21    | (Unit ID 15) In accordance with §63.3370(a)(2) If the owner/operator chooses to demonstrate compliance by use of "as-applied" compliant coating materials, then you must demonstrate that (i) each coating material used does not exceed 0.04 kg organic HAP per kg coating material as applied, using the procedures set out in §63.3370(c)(1). Use either Equation 1a or 1b of §63.3370 to demonstrate compliance with §63.3320(b)(2), in accordance with §63.3370(c)(5)(1) or (ii) each coating material does not exceed 0.2 kg organic HAP per kg coating solids as applied, using the procedures set out in §63.3370(c)(2). Use Equations 2 and 3 of §63.3370 to determine compliance with §63.3320(b)(3) in accordance with §63.3370(c)(5)(i) or (iii) the monthly average of all coating materials used does not exceed 0.04 kg organic HAP per kg coating material as-applied, using the procedures set out in §63.3370(c)(3). Use Equation 4 of §63.3370 to determine compliance with §63.3320(b)(2) in accordance with §63.3370(c)(5)(ii) or (iv) the monthly average of all coating material used does not exceed 0.2 kg organic HAP per kg coating solids as-applied, using the procedures set out in §63.3370(c)(4). Use Equation 5 of §63.3370 to determine compliance with §63.3320(b)(3) in accordance with §63.3370(c)(5)(ii). |

## 3M Company (Greenville Film Plant) TV-1200-0073 Page 38 of 42

| Condition<br>Number | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.B.22              | (Unit ID 15) In accordance with §63.3370(a)(3) If the owner/operator chooses to demonstrate compliance by tracking total monthly organic HAP applied, then you must demonstrate that the total monthly organic HAP applied does not exceed the calculated limit based on emission limitations. Follow the procedures set out in §63.3370(d). Show that the monthly HAP applied (Equation 6 of §63.3370) is less than the calculated equivalent allowable organic HAP (Equation 13a or 13b of §63.3370).                                                                                                                                                                                    |
|                     | (Unit ID 15) In accordance with §63.3370(c) As-applied "compliant" coating materials. If the owner/operator complies by using coating materials that meet the emission standards in §63.3320(b)(2) or (3) as-applied, the owner/operator must demonstrate compliance by following one of the procedures in paragraphs (c)(1) through (4) of §63.3370. Compliance is determined in accordance with paragraph (c)(5) of §63.3370.                                                                                                                                                                                                                                                            |
|                     | (c)(1) Each coating material as-applied meets the mass fraction of coating material standard (\$63.3320(b)(2)). The owner/operator must demonstrate that each coating material applied at an existing affected source during the month contains no more than 0.04 kg organic HAP per kg coating material applied, and each coating material applied at a new affected source contains no more than 0.016 kg organic HAP per kg coating material applied as determined in accordance with paragraphs (c)(1)(i) and (ii) of \$63.3370. You must calculate the as-applied organic HAP content of as-purchased coating materials, which are reduced, thinned, or diluted prior to application. |
|                     | (c)(1)(i) Determine the organic HAP content or volatile organic content of each coating material applied on an as-purchased basis in accordance with §63.3360(c).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                     | (c)(1)(ii) Calculate the as-applied organic HAP content of each coating material using Equation 1a or 1b of this section.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6.B.23              | (c)(2) Each coating material as-applied meets the mass fraction of coating solids standard (§63.3320(b)(3)). The owner/operator must demonstrate that each coating material applied at an existing affected source contains no more than 0.20 kg of organic HAP per kg of coating solids applied and each coating material applied at a new affected source contains no more than 0.08 kg of organic HAP per kg of coating solids applied. The owner/operator must demonstrate compliance in accordance with paragraphs (c)(2)(i) and (ii) of §63.3370.                                                                                                                                    |
|                     | (c)(2)(i) Determine the as-applied coating solids content of each coating material following the procedure in §63.3360(d). The owner/operator must calculate the as-applied coating solids content of coating materials which are reduced, thinned, or diluted prior to application, using Equation 2 and 3 of §63.3370:                                                                                                                                                                                                                                                                                                                                                                   |
|                     | (c)(3) Monthly average organic HAP content of all coating materials as-applied is less than the mass percent limit (§63.3320(b)(2)). Demonstrate that the monthly average as-applied organic HAP content of all coating materials applied at an existing affected source is less than 0.04 kg organic HAP per kg of coating material applied, and all coating materials applied at a new affected source are less than 0.016 kg organic HAP per kg of coating material applied, as determined by Equation 4 of §63.3370.                                                                                                                                                                   |
|                     | (c)(4) Monthly average organic HAP content of all coating materials as-applied is less than the mass fraction of coating solids limit (§63.3320(b)(3)). Demonstrate that the monthly average as-applied organic HAP content on the basis of coating solids applied of all coating materials applied at an existing affected source is less than 0.20 kg organic HAP per kg coating solids applied, and all coating materials applied at a new affected source are less than 0.08 kg organic HAP per kg coating solids applied, as determined by Equation 5 of §63.3370.                                                                                                                    |

## 3M Company (Greenville Film Plant) TV-1200-0073 Page 39 of 42 (Updated 8/27/09)

| Condition<br>Number | Conditions                                                                                                                                                                                                                                                         |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | (Unit ID 15) In accordance with §63.3370(c)(5) The affected source is in compliance with emission standards in §63.3320(b)(2) or (3) if:                                                                                                                           |
| 6.B.24              | (c)(5)(i) The organic HAP content of each coating material as-applied at an existing affected source is no more than 0.04 kg organic HAP per kg coating material or 0.2 kg organic HAP per kg coating solids, or                                                   |
|                     | (c)(5)(ii) The monthly average organic HAP content of all as-applied coating materials at an existing affected source are no more than 0.04 kg organic HAP per kg coating material or 0.2 kg organic HAP per kg coating solids                                     |
|                     | (Unit ID 15) In accordance with §63.3410(a) Each owner/operator of an affected source subject to this subpart must maintain the records specified in paragraphs (a)(1) and (2) of §63.3410 on a monthly basis in accordance with the requirements of §63.10(b)(1): |
|                     | (a)(1) Records specified in $\underline{\$63.10(b)(2)}$ of all measurements needed to demonstrate compliance with this standard, including:                                                                                                                        |
|                     | (a)(1)(i) Continuous emission monitor data in accordance with the requirements of §63.3350(d);                                                                                                                                                                     |
| 6.B.25              | (a)(1)(iii) Organic HAP content data for the purpose of demonstrating compliance in accordance with the requirements of §63.3360(c);                                                                                                                               |
|                     | (a)(1)(iv) Volatile matter and coating solids content data for the purpose of demonstrating compliance in accordance with the requirements of §63.3360(d); and                                                                                                     |
|                     | (a)(1)(vi) Material usage, organic HAP usage, volatile matter usage, and coating solids usage and compliance demonstrations using these data in accordance with the requirements of §63.3370(b), (c), and (d).                                                     |
|                     | (a)(2) Records specified in $\underline{\$63.10(c)}$ for each CMS operated by the owner or operator in accordance with the requirements of $\underline{\$63.3350(b)}$ .                                                                                            |

## PART 7.0 ADDITIONAL CONDITIONS

## A. SPECIFIC CONDITIONS

| Condition<br>Number | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.A.1               | The following activities shall be allowed, without a construction permit, or without revising or reopening the operating permit with proper advanced notification unless otherwise specified by S.C. Regulation 61-62.70 or any other State or Federal requirement. The activity will not result in emissions that will exceed any limit in this permit, or emission source's and facility's potential to emit; the activity itself is not considered a modification under 40 CFR Part 60, 61 or 63. 40CFR63 (MACT) related activities are not covered under this permitting flexibility condition. |
| 7.1.1               | As part of this permit flexibility procedure the facility shall keep an on-site implementation log (OSIL) to document all changes made under the procedure. The OSIL shall provide detailed contemporaneous information supporting the changes made under this procedure. The OSIL shall be readily available to the Bureau.                                                                                                                                                                                                                                                                        |
|                     | Existing emission limitations defined in an approved air permit are not exceeded or there is no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Modeled Emission Rates

Site

3M Company (Greenville Film Plant) TV-1200-0073

PAGE 1 OF 6 (Updated 8/27/09)

| AMBIENT AIR QUALITY STANDARDS - STANDARD 2 (lbs/hr) |                                        |         |                  |                 |                 |       |  |  |
|-----------------------------------------------------|----------------------------------------|---------|------------------|-----------------|-----------------|-------|--|--|
| MODELING<br>ID                                      | SOURCE ID                              | TSP     | PM <sub>10</sub> | SO <sub>2</sub> | NO <sub>2</sub> | со    |  |  |
| 003E_001                                            | Steam Boiler #1                        | 3.59    | 3.59             | 30.30           | 21.23           | 4.86  |  |  |
| 003E_002                                            | Steam Boiler #2                        | 2.57    | 2.57             | 4.33            | 15.18           | 3.48  |  |  |
| 003E_004                                            | Carotek Oil Heater                     | 1.74    | 1.74             | 14.65           | 10.29           | 2.35  |  |  |
| 007E_005                                            | G2 Edge Trim                           | 0.041   | 0.041            |                 |                 |       |  |  |
| 007E_006                                            | G1GR                                   | 0.041   | 0.041            |                 |                 |       |  |  |
| 007E_007                                            | G2 Grinder                             | 0.041   | 0.041            |                 |                 |       |  |  |
| 007E_008                                            | G1/G2 Dryer                            | 0.030   | 0.030            |                 |                 |       |  |  |
| 009E_014                                            | Flake Silo                             | 0.041   | 0.041            |                 |                 |       |  |  |
| 009E_015                                            | Box/Tote Airveying                     | 0.0003  | 0.00022          |                 |                 |       |  |  |
| 888E_001                                            | Virgin Silo                            | 0.020   | 0.020            |                 |                 |       |  |  |
| 888E_002                                            | Reclaim Silo                           | 0.030   | 0.030            |                 |                 |       |  |  |
| 888E_035                                            | VSET Edge                              | 0.002   | 0.002            |                 |                 |       |  |  |
| 888E 037                                            | PET Reclaim Building                   | 0.17    | 0.17             |                 |                 |       |  |  |
| 888E_037                                            | PET Reclaim Vacuum                     | 0.17    | 0.17             |                 |                 |       |  |  |
| 17J_001                                             | 17J Baghouse                           | 2.314   | 2.314            |                 |                 |       |  |  |
| 17J_003                                             | J012 Flame Treater                     | 0.036   | 0.036            | 0.002           | 0.367           | 0.092 |  |  |
| 17J 005/006                                         | J010 Tenter Oven                       | 0.348   | 0.348            | 0.016           | 0.860           | 7.400 |  |  |
| 20E_005                                             | E002/E004 Grinders                     | 0.686   | 0.686            |                 |                 |       |  |  |
| 20E_006                                             | E001/E003 Grinders                     | 0.686   | 0.686            |                 |                 |       |  |  |
| 20E_008                                             | A002 Airvey                            | 0.197   | 0.197            |                 |                 |       |  |  |
| 20E_009                                             | A001 Airvey                            | 0.309   | 0.309            |                 |                 |       |  |  |
| 20E_053                                             | A004 Resin Hopper                      | 1.100   | 1.100            |                 |                 |       |  |  |
| 20E_055                                             | A008 Melters A & B                     | 0.308   | 0.308            |                 |                 |       |  |  |
| 20E_058                                             | C007 Drying Oven                       | 0.040   | 0.040            | 0.003           | 0.480           | 0.400 |  |  |
| 20E_082                                             | A011 Bulk Rubber Silo                  | 0.050   | 0.050            |                 |                 |       |  |  |
| 21E_003                                             | A014 Antioxidant Melters A & B         | 0.070   | 0.070            |                 |                 |       |  |  |
| 026E-001                                            | G-3 Aspirator Feed Hoppers             |         |                  |                 |                 |       |  |  |
| 026E-004                                            | G-3 Aspirator Feed Hoppers (fugitives) |         |                  | -               |                 |       |  |  |
| 026E-005                                            | G-3Coater #1                           |         |                  |                 |                 |       |  |  |
| 026E-006                                            | G-3 Floor Scrap Grinder 1              | 0.004   | 0.000245         |                 |                 |       |  |  |
| 026E-007                                            | G-3Floor Scrap Grinder 2               | 0.038   | 0.0057           |                 |                 |       |  |  |
| 026E-008                                            | G-3 Floor Scrap Grinder 3              | 0.00107 | 0.00107          |                 |                 |       |  |  |
| 026E-009                                            | G-3 Floor Scrap Grinder 4              |         |                  |                 | 1               |       |  |  |
| 026E-010                                            | G-3 Oven #1                            |         |                  |                 |                 |       |  |  |
| 026E-010                                            | G-3 Even #1                            |         |                  | **              |                 |       |  |  |
| 026E-010                                            | G-3 Even #1                            |         |                  |                 |                 |       |  |  |
| 026E-011                                            | G-3 Oven #1                            |         |                  |                 |                 |       |  |  |

Modeled Emission Rates Site

3M Company (Greenville Film Plant)
TV-1200-0073
PAGE 2 OF 6

|                | AMBIENT AIR QUALITY STAN               | DARDS - S | TANDAR           | D 2 (lbs/h      | r)              | <u> Al-Maria</u> |
|----------------|----------------------------------------|-----------|------------------|-----------------|-----------------|------------------|
| MODELING<br>ID | SOURCE ID                              | TSP       | PM <sub>10</sub> | SO <sub>2</sub> | NO <sub>2</sub> | CO               |
| 026E-012       | G-3 Oven #1                            |           |                  |                 |                 |                  |
| 026E-013       | G-3 Oven #1                            |           |                  |                 |                 |                  |
| 026E-013       | G-3 Oven #1                            |           |                  |                 |                 |                  |
| 026E-014       | G-3 Oven #1                            |           |                  |                 |                 |                  |
| 026E-015       | G-3 Oven #1                            |           |                  |                 |                 |                  |
| 026E-016       | G-3 Oven #1                            |           |                  |                 |                 |                  |
| 026E-017       | G-3 Edge Trim Grinder 1                |           |                  |                 |                 |                  |
| 026E-018       | G-3 Edge Trim Grinder 2                |           |                  |                 |                 |                  |
| 026E-019       | G-3 Coater #2                          |           |                  |                 |                 |                  |
| 026E-020       | G-3 Oven #2                            |           |                  |                 |                 |                  |
| 026E-021       | G-3 Die/Casting Wheel                  | 0.58      | 0.58             |                 |                 |                  |
| 026E-022       | G-3 Extruder Vacuum Pump               |           |                  |                 |                 |                  |
| 026E-023       | G-3 Die/Casting Wheel                  | 0.62      | 0.58             |                 |                 |                  |
| 026E-004       | G-3 Aspirator Feed Hoppers (fugitives) |           |                  |                 |                 |                  |
| 026E-002       | G-3 Resin Charging Hopper (fugitives)  |           |                  |                 |                 |                  |
| 026E-003       | G-3 Resin Dryer                        |           |                  |                 |                 |                  |
| 026E-003       | G-3 Oven #2 (fugitives)                |           |                  |                 |                 |                  |
| 026E-024       | G-3 Die Maintenance (fugitives)        |           |                  |                 |                 |                  |
| 026E-025       | G-3 Chain Maintenance (fugitives)      |           |                  |                 |                 |                  |
| 026E-026       | G-3 Clip Cooling (fugitives)           |           |                  |                 |                 |                  |
| FACILITY TOT   | AL                                     | 18.87     | 15.79            | 49.300          | 48.406          | 18.582           |

<sup>\*</sup>New baghouse will split the emissions of Dryer Tower G1 and Dryer Tower G2 (G1 emissions are listed in Deferral Table). Baghouse-BH5(old) and BH13 (new).

**Modeled Emission Rates** Site

3M Company (Greenville Film Plant) TV-1200-0073 PAGE 3 OF 6 (Updated 8/27/09)

| MODELING ID                    | SOURCE ID                      | PM <sub>10</sub><br>(Lbs/Hr) | SO <sub>2</sub><br>(Lbs/Hr) | NO <sub>2</sub><br>(Lbs/Hr) |  |
|--------------------------------|--------------------------------|------------------------------|-----------------------------|-----------------------------|--|
| 17J_003                        | J012 Flame Treater             |                              |                             | 0.367                       |  |
| 17J_005/006                    | J010 Tenter Oven               |                              |                             | 0.860                       |  |
| 20E_058                        | C007 Drying Oven               | 0.040                        | 0.003                       | 0.480                       |  |
| 20E_082                        | A011 Bulk Rubber Silo          | 0.050                        |                             |                             |  |
| 21E_003                        | A014 Antioxidant Melters A & B | 0.070                        |                             |                             |  |
| 026E-006                       | G-3 Floor Scrap Grinder 1      | 0.000245                     |                             |                             |  |
| 026E-007                       | G-3Floor Scrap Grinder 2       | 0.0057                       |                             |                             |  |
| 026E-008                       | G-3 Floor Scrap Grinder 3      | 0.00107                      |                             |                             |  |
| 026E-021                       | G-3 Die/Casting Wheel          | 0.58                         |                             |                             |  |
| 026E-023 G-3 Die/Casting Wheel |                                | 0.58                         |                             |                             |  |
| 009E_015                       | Box/Tote Airveying             | 0.00022                      |                             |                             |  |
| ACILITY TOTAL                  |                                | 1.327                        | 0.003                       | 1.707                       |  |

| AIR TOXICS – LEVEL I DE MINIMIS ANALYSIS |            |                            |                      |  |  |  |  |  |
|------------------------------------------|------------|----------------------------|----------------------|--|--|--|--|--|
| POLLUTANT                                | CAS NUMBER | EMISSION RATE<br>(LBS/DAY) | DE MINIMIS (LBS/DAY) |  |  |  |  |  |
| Diethanolamine                           | 111-42-2   | 1.44                       | 1.548                |  |  |  |  |  |
| Glycol Ethers                            | +          | 30.00                      | +                    |  |  |  |  |  |
| Hexane                                   | 110-54-3   | 0.312                      | 10.8000              |  |  |  |  |  |
| Methyl Ethyl Ketone                      | 78-93-3    | 12.00                      | 177.000              |  |  |  |  |  |
| Methyl Isobutyl Ketone                   | 108-10-1   | 0.24                       | 24.600               |  |  |  |  |  |
| 2,2,4-Trimethylpentane                   | 540-84-1   | 0.312                      | 105.000              |  |  |  |  |  |

## $\underline{\textbf{ATTACHMENT A}}$

Modeled Emission Rates Site

3M Company (Greenville Film Plant) TV-1200-0073 PAGE 4 OF 6 (Updated 8/27/09)

| TOXIC AIR POLLUTANTS MODELED - STANDARD 8, TABLE I (lbs/hr) |                              |              |                       |                 |                   |              | os/hr)             |          |                        |                     |
|-------------------------------------------------------------|------------------------------|--------------|-----------------------|-----------------|-------------------|--------------|--------------------|----------|------------------------|---------------------|
| MODELING ID                                                 | SOURCE ID                    | Acetaldehyde | Antimony<br>Compounds | 1,4-<br>Dioxane | Ethyl<br>Acrylate | Formaldehyde | Ethylene<br>Glycol | Methanol | Methyl<br>Methacrylate | Sodium<br>Hydroxide |
| 001E_002                                                    | G1 Tenter                    |              | 0.017                 |                 | 0.11              | 0.007        | 0.17               | 0.5      | 1.05                   | 0.168               |
| 001E_057                                                    | G1XT G1<br>Extruder          | 0.13         |                       |                 |                   |              |                    |          |                        |                     |
| 001E_097                                                    | PP2 Esterification System #2 | 0.0001       |                       | 6.67E-05        |                   |              | 0.00187            | 0.00047  |                        |                     |
| 001E_098                                                    | Polycon #4                   | 0.0001       |                       | 6.67E-05        |                   |              | 0.00187            | 0.00047  |                        |                     |
| 001E_099                                                    | Polycon #3                   | 0.0001       |                       | 6.67E-05        |                   |              | 0.00187            | 0.00047  |                        |                     |
| 001E_101                                                    | Polycon #2                   | 0.0001       |                       | 6.67E-05        |                   |              | 0.00187            | 0.00047  |                        |                     |
| 001E_102                                                    | Polycon #1                   | 0.0001       |                       | 6.67E-05        |                   |              | 0.00187            | 0.00047  |                        |                     |
| 001E_103                                                    | PP1 Esterification System #1 | 0.0001       |                       | 6.67E-05        |                   |              | 0.00187            | 0.00047  |                        |                     |
| 001E_112                                                    | Numerous sources             | 0.0002       |                       | 0.0004          |                   |              | 0.0146             | 0.0272   |                        |                     |
| 007E_001                                                    | G2GC G Coater                |              | 0.017                 |                 | 0.11              | 0.007        | 0.17               | 0.5      | 1.05                   | 0.168               |
| 007E_002                                                    | G2GC G Coater                |              | 0.017                 |                 | 0.11              | 0.007        | 0.17               | 0.5      | 1.05                   | 0.168               |
| 007E_003                                                    | G2PC P Coater                |              | 0.017                 |                 | 0.11              | 0.007        | 0.17               | 0.5      | 1.05                   | 0.168               |
| 007E_004                                                    | G2PC P Coater                |              | 0.017                 |                 | 0.11              | 0.007        | 0.17               | 0.5      | 1.05                   | 0.168               |

Modeled Emission Rates Site 3M Company (Greenville Film Plant)

TV-1200-0073 PAGE 5 OF 6 (Updated 8/27/09)

|               |                                         | TOXIC AIR    | POLLUTANT             | S MODE          | LED - STA         | ANDARD 8, TA | ABLE I (II         | os/hr)   |                        |                     |
|---------------|-----------------------------------------|--------------|-----------------------|-----------------|-------------------|--------------|--------------------|----------|------------------------|---------------------|
| MODELING ID   | SOURCE ID                               | Acetaldehyde | Antimony<br>Compounds | 1,4-<br>Dioxane | Ethyl<br>Acrylate | Formaldehyde | Ethylene<br>Glycol | Methanol | Methyl<br>Methacrylate | Sodium<br>Hydroxide |
| 007E_073      | G2 Extruder                             | 0.22         |                       |                 |                   |              |                    |          |                        |                     |
| 009E_005      | Triethylene<br>Glycol Wash<br>Tank West | 0.004        |                       |                 |                   |              |                    |          |                        |                     |
| 009E_006      | Triethylene<br>Glycol Wash<br>Tank East | 0.004        |                       |                 |                   |              |                    |          |                        |                     |
| 009E_011      | Filter Wash<br>Station                  | 0.13         |                       |                 |                   |              |                    |          |                        |                     |
| 888E_003      | EJT1 Vertical<br>Ejector Tower          | 2.528        |                       |                 |                   |              | 1.397              | 3.069    |                        |                     |
| 888E_004      | EJT2 Vertical<br>Ejector Tower          | 2.528        |                       |                 |                   |              | 1.397              | 3.069    |                        |                     |
| 888E_005      | Methanol Tank                           |              |                       |                 |                   |              | 6.2E-06            | 0.3703   |                        |                     |
| 888E_006      | Virgin EG Tank                          |              |                       |                 |                   |              | 0.4114             |          |                        |                     |
| 888E_007      | Recovered EG<br>Tank                    |              |                       |                 |                   |              | 0.4114             | 0.002    |                        |                     |
| 20E_001       | C002 LAB Station and Dryer              |              |                       |                 |                   |              | 0.01               | 0.004    |                        |                     |
| 026E_005      | G-3 Coater #1                           | 0.0          | 0.0                   | 0.0             | 0.08              | 0.1476       | 0.0                | 0.72     | 0.03                   | 0.0                 |
| FACILITY TOTA | <b>N</b> L                              | 5.5448       | 0.085                 | 0.0008          | 0.63              | 0.1826       | 4.5026             | 9.764    | 5.28                   | 0.84                |

Modeled Emission Rates
Site

3M Company (Greenville Film Plant)

TV-1200-0073

PAGE 6 OF 6 (Updated 8/27/09)

|               | TOXIC AIR POL              | LUTANTS N | MODELED - S | STANDARD 8, T | ABLE II (lbs/ | hr)     |                        |
|---------------|----------------------------|-----------|-------------|---------------|---------------|---------|------------------------|
| MODELING ID   | SOURCE ID                  | Benzene   | Cumene      | Ethylbenzene  | Toluene       | Xylene  | Vinylidene<br>Chloride |
| 20E_001       | C002 LAB Station and Dryer | 0.037     | 0.029       | 36.254        | 42.437        | 120.508 | 0.0                    |
| 20E_006       | E001/E003 Grinders         |           |             |               | 0.009         | 0.027   | 0.0                    |
| 88E_012       | LAB Tank                   |           |             | 0.1206        | 0.077         | 0.405   | 0.0                    |
| 88E_013       | Solvent Tank               |           |             | 0.17          | 0.199         | 0.565   | 0.0                    |
| 88E_014       | Backup Solvent Tank        |           |             | 0.17          | 0.199         | 0.565   | 0.0                    |
| 026E-005      | G-3 Coater #1              | 0.0       | 0.0         | 0.0           | 0.0           | 0.0     | 0.449                  |
| FACILITY TOTA | XL .                       | 0.037     | 0.029       | 36.7146       | 42.921        | 122.07  | 0.449                  |

## Attachment F

Ambient Air Quality Modeling & Analysis

THIS ATTACHMENT CONTAINS PREVIOUSLY SUBMITTED MODELING DOCUMENTATION: MODELING IS NOT PERFORMED AS PART OF THIS TITLE V RENEWAL APPLICATION.

Greenville Site – Particulates – December 2009

## AMBIENT AIR QUALITY ANALYSIS December 2009

This memorandum summarizes the results from air dispersion modeling for the 3M facility located in Greenville, South Carolina. The 3M facility is renewing its Title V permit for the Tape facility. The South Carolina Department of Health & Environmental Control (SCDEHC) requires a modeling analysis for Title V renewal applications if changes have occurred at the facility that may affect emission sources and if those changes have not been previously modeled. The last modeling analysis for the facility was completed in January 2004. Since that time, the only changes that have occurred at the Tape facility affect particulate emitting sources. Therefore, as required by SCDEHC, the purpose of the modeling is to demonstrate compliance with the National Ambient Air Quality Standards (NAAQS) and the South Carolina Ambient Air Quality Standards (SCAAQS) for particulate matter less than 10 microns (PM<sub>10</sub>) and total suspended particulate (TSP).

Please note the model does include sources from both the 3M Tape and Film plants. The Tape and Film plants operate under separate Title V permits but are located on the same property. As indicated above, only the Tape plant is renewing its Title V permit at this time.

The modeling analysis was completed with the AMS/EPA Regulatory Model with Plume Rise Model Enhancements (AERMOD-PRIME). Modeling of the facility's potential emissions using AERMOD-PRIME demonstrates compliance with NAAQS/SCAAQS. This report provides a discussion of the air dispersion modeling analysis.

#### 1.0 MODELING DESCRIPTION

This section summarizes the source parameters, emission rates, building downwash parameters, receptor grid and meteorological data utilized in the analysis.

#### 1.1 Point Source Parameters

The AERMOD-PRIME, version 09292 was used to complete the modeling analysis. The specific parameters include: NAD83 UTM coordinates, base elevation, PM emission rate, stack height, stack temperature, exhaust flowrate, exit velocity, and stack diameter. The PM emission rate represents the emission rate for both  $PM_{10}$  and TSP. The emission rate is the same for both pollutants. These parameters are summarized in Table 1.

**Table 1. Modeling Parameters** 

| Model       | Stack                                   | UTM       | NAD83      | Base E | levation | PM Emiss | ion Rate | Stack          | Height       | Stack           | Temp             | Airflow | Exit V         | elocity       | Stack I      | Diameter     |
|-------------|-----------------------------------------|-----------|------------|--------|----------|----------|----------|----------------|--------------|-----------------|------------------|---------|----------------|---------------|--------------|--------------|
| Stack ID    | Description                             | E (m)     | N (m)      | (ft)   | (m)      | (g/s)    | (lb/hr)  | (ft)           | (m)          | (F)             | (K)              | (acfm)  | (ft/sec)       | (m/s)         | (ft)         | (m)          |
| 003E_001    | Steam Boiler #1 - Gas Fired             | 375429.47 | 3846024.25 | 930.48 | 283.61   | 1.70E-01 | 1.35     | 41.00          | 12.50        | 561.00          | 567.04           | 10,730  | 25.30          | 7.71          | 3.00         | 0.91         |
| 003E_002    | Steam Boiler #2 - Gas Fired             | 375430.81 | 3846017.95 | 929.66 | 283.36   | 3.96E-02 | 0.31     | 50.00          | 15.24        | 561.00          | 567.04           | 7,691   | 10.20          | 3.11          | 4.00         | 1.22         |
| 003E_004    | CARO Boiler - Gas Fired                 | 375434.93 | 3846034.89 | 930.87 | 283.73   | 8.20E-02 | 0.65     | 55.00          | 16.76        | 608.00          | 593.15           | 5,365   | 12.65          | 3.86          | 3.00         | 0.91         |
| 007E_005    | Airveying G1 Coater Grinder             | 375411.33 | 3846192.89 | 926.67 | 282.45   | 2.12E-01 | 1.68     | 14.00          | 4.27         | 310.00          | 427.59           | 3,488   | 43.80          | 13.35         | 1.30         | 0.40         |
| 007E_006    | Airveying                               | 375408.49 | 3846191.77 | 926.54 | 282.41   | 5.04E-03 | 0.04     | 19.10          | 5.82         | 294.00          | 418.71           | 3,400   | 0.03           | 0.01          | 0.30         | 0.40         |
| 007E_007    | Airveying G2 Edge Trim                  | 375380.83 | 3846194.82 | 924.67 | 281.84   | 5.04E-03 | 0.04     | 3.58           | 1.09         | 294.00          | 418.71           | 7,383   | 39.17          | 11.94         | 2.00         | 0.61         |
| 007E_008    | Airveying                               | 375410.19 | 3846100.31 | 928.84 | 283.11   | 3.78E-03 | 0.03     | 14.38          | 4.38         | 311.00          | 428.15           | 3,319   | 51.45          | 15.68         | 1.17         | 0.81         |
| 009E_014    | Flake Silo Airveying G1/G2 Dryer        | 375352.83 | 3846090.07 | 928.05 | 282.87   | 5.04E-03 | 0.04     | 8.75           | 2.67         | 294.00          | 418.71           | 6,137   | 130.23         | 39.69         | 1.00         | 0.30         |
| 009E_015    | Box/Tote airveying                      | 375332.26 | 3846052.39 | 924.77 | 281.87   | 2.52E-05 | 0.0002   | 15.00          | 4.57         | Ambnt           | 0                | 14,996  | 79.56          | 24.25         | 2.00         | 0.50         |
| 017J 001    | J 001 through 006, 013, 014, 018, 019   | 375605.32 | 3845985.52 | 923,79 | 281.57   | 2.91E-01 | 2.31     |                |              |                 |                  |         |                |               |              |              |
| 017J 003    | J 012 (Flame Treater)                   | 375521.92 | 3845959.69 | 931.14 | 283.81   | 2.52E-03 | 0.02     | 25.00<br>18.42 | 7.62<br>5.61 | Ambnt           | 0                |         | 0.03           | 0.01          | 3.41         | 1.04         |
| 017J 005    | J 010 (Tenter Oven)                     | 375545.30 | 3845939.77 | 934.28 | 284.77   | 5.67E-03 | 0.02     | 46.00          |              | 320.00          | 433.15           | 0.006   | 0.03           | 0.01          | 1.83         | 0.56         |
| 017J 006    | J 010 (Tenter Oven)                     | 375549.87 | 3845950.29 | 933.50 | 284.53   | 5.67E-03 | 0.05     | 46.00          | 14.02        | 370.00          | 460.93           | 8,836   | 20.83          | 6.35          | 3.00         | 0.91         |
| 020E 005    | J016, 017 & J013                        | 375594.16 | 3845908.98 | 930.64 | 283.66   | 4.28E-02 | 0.03     | 43.00          | 13.11        | 370.00<br>79.00 | 460.93<br>299.26 |         | 0.03           | 0.01          | 2.66         | 0.81         |
| 020E 006    | J 016, 017 & J 013                      | 375598.93 | 3845910.00 | 930.12 | 283.50   | 6.93E-02 | 0.55     | 43.00          | 13.11        | 90.00           | 305.37           |         | 0.03           | 0.01          | 2.00         | 0.61         |
| 020E 008    | A 002                                   | 375550.83 | 3845905.48 | 932.81 | 284.32   | 6.30E-03 | 0.05     | 52.00          | 15.85        | 82.00           |                  |         | 0.03           | 0.01          | 2.00         | 0.61         |
| 020E 009    | A 001                                   | 375495.78 | 3845882.84 | 924.51 | 281.79   | 9.95E-02 | 0.03     | 47.00          | 14.33        | Ambnt           | 300.93           |         | 0.03           | 0.01          | 0.67         | 0.20         |
| 020E 053    | A 004                                   | 375545.24 | 3845902.66 | 932.05 | 284.09   | 7.06E-02 | 0.79     | 56.90          | 17.34        | Ambnt           | 0                |         | 0.03           | 0.01          | 0.67         | 0.20         |
| 020E 055    | A 008, 010                              | 375548.11 | 3845896.28 | 931.10 | 283.80   | 1.03E-01 | 0.82     | 60.73          | 18.51        | 79.00           | 299.26           | 7,565   |                | 0.01          | 1.09         | 0.33         |
| 020E 058    | C 007                                   | 375541.83 | 3845934.16 | 934.51 | 284.84   | 5.04E-03 | 0.04     | 48.00          | 14.63        | 176.00          | 353.15           | 14,750  | 52.42<br>53.44 | 15.98         | 1.75         | 0.53         |
| 020E 075    | E 006                                   | 375489.89 | 3845898.62 | 925.59 | 282.12   | 4.79E-02 | 0.38     | 66.83          | 20.37        | Ambnt           | 0                |         | 0.03           | 16.29<br>0.01 | 2.42         | 0.74         |
| 020E 076    | E 007                                   | 375490.91 | 3845893.84 | 925.16 | 281.99   | 4.79E-02 | 0.38     | 66.83          | 20.37        | Ambnt           | 0                |         | 0.03           | 0.01          | 0.75<br>0.75 | 0.23         |
| 020E_077    | E 008                                   | 375491.92 | 3845889.07 | 924.77 | 281.87   | 4.79E-02 | 0.38     | 66.83          | 20.37        | Ambnt           | 0                |         | 0.03           | 0.01          | 0.75         | 0.23         |
| 020E_082    | A 011                                   | 375490.65 | 3845882.08 | 923.79 | 281.57   | 6.30E-03 | 0.05     | 47.00          | 14.33        | Ambnt           | 0                |         | 0.03           | 0.01          | 0.73         | 0.23         |
| 021E_003    | A 014                                   | 375574.20 | 3845921.90 | 933.56 | 284.55   | 8.82E-03 | 0.07     | 48.25          | 14.71        | 87.00           | 303.71           | 7,726   | 65.40          | 19.93         | 1.58         | 0.20         |
| 888E_001    | Airveying                               | 375395.18 | 3846068.25 | 929.79 | 283.40   | 2.52E-03 | 0.02     | 3.58           | 1.09         | 294.00          | 418.71           | 853     | 32.17          | 9.81          | 0.75         | 0.48         |
| 888E_002    | Airveying                               | 375397.28 | 3846064.52 | 930.25 | 283.54   | 3.78E-03 | 0.03     | 3.92           | 1.19         | 294.00          | 418.71           | 2,230   | 68.70          | 20.94         | 0.73         | 0.23         |
| 888E_015    | A 015                                   | 375551.51 | 3845820.85 | 916.01 | 279.20   | 7.56E-03 | 0.06     | 41.00          | 12.50        | Ambnt           | 0                |         | 0.03           | 0.01          | 3.75         | 1.14         |
| 888E_019    | A 016                                   | 375550.15 | 3845826.45 | 916.60 | 279.38   | 7.56E-03 | 0.06     | 41.00          | 12.50        | Ambnt           | 0                |         | 0.03           | 0.01          | 3.75         | 1.14         |
| 888E_037    | Building/Vacuum                         | 375331.52 | 3846112.88 | 926.80 | 282.49   | 5.04E-03 | 0.04     | 45.00          | 13.72        | 294.00          | 418.71           | 55,371  | 47.00          | 14.33         | 5.00         |              |
| 888E_038    | G1 Edge Trim Baghouse                   | 375411.33 | 3846192.89 | 926.67 | 282.45   | 1.92E-03 | 0.02     | 11.67          | 3.56         | 80.00           | 299.82           | 5,725   | 68.33          | 20.83         | 1.33         | 1.52<br>0.41 |
| 888E 039    | G1 and G2 Drying Tower Baghouse         | 375475.30 | 3846255.78 | 921.98 | 281.02   | 7.56E-03 | 0.06     | 14.50          | 4.42         | Ambnt           | 0                | 10,053  | 30.00          | 9.14          | 2.67         | 0.41         |
| 026E_023    | G-3 Film Line                           | 375335.80 | 3846189.48 | 922.01 | 281.03   | 1.51E-02 | 0.12     | 56.00          | 17.07        | 80.00           | 299.82           | 22,470  | 35.79          | 10.91         | 3.65         | 1.11         |
| 026E_021    | G-3 Film Line                           | 375336.62 | 3846186.18 | 921.95 | 281.01   | 1.51E-02 | 0.12     | 56.00          | 17.07        | 120.00          | 322.04           | 22,470  | 33.49          | 10.91         | 3.65         | 1.11         |
| 026E_007    | G-3 Film Line                           | 375311.80 | 3846144.38 | 923.39 | 281.45   | 1.57E-03 | 0.0125   | 15.00          | 4.57         | Ambnt           | 0                | 4,999   | 59.67          | 18.19         | 1.33         |              |
| 026E_006    | G-3 Film Line                           | 375312.90 | 3846153.98 | 923.16 | 281.38   | 3.02E-04 | 0.0024   | 15.00          | 4.57         | Ambnt           | 0                | 29,992  | 70.72          | 21.55         | 3.00         | 0.41         |
| Ambut - Eyb | aust gases at ambient temperature. Renr |           |            |        |          |          |          |                |              |                 | U                | 49,994  | 10.12          | 21.55         | 3.00         | 0.91         |

Ambnt = Exhaust gases at ambient temperature. Represented in AERMOD input files with a value of zero (0) consistent with USEPA and SCDHEC guidelines.

## 1.2 Building Downwash

To assess the impact of building downwash, building dimensions used in the AERMOD-PRIME model were calculated suing the USEPA Building Profile Input Program – Plume Rise Model Enhancements (BPIP-PRIME), version 04274. Locations for stacks and buildings were input into BPIP-PRIME in meters.

## 1.3 Receptor Grid

Receptor locations were based on SCDHEC guidelines. The receptors were based on a Cartesian receptor grid surrounding the facility with discrete receptors placed along the ambient air boundary. Receptors were not placed on 3M property. Receptors include:

- Discrete receptors along the property boundary at 50-meter intervals,
- Cartesian receptors at a resolution of 100 meters from the property line outward to a distance of 1.0 kilometer, and
- Cartesian receptors at a resolution of 1,000 meters from 1.0 kilometers outward to a distance of 10.0 kilometers.

Receptor elevations were determined using the AERMOD terrain preprocessor (AERMAP), version 06341, and USGS 7.5-minute resolution Digital Elevation Model (DEM) files. The option of NADA = 4 was used to reference the NAD83 anchor coordinates based on the AERMAP users manual.

#### 1.4 Meteorological Data

For refined modeling analyses, USEPA and MPCA guidelines specify the use of either one (1) year of onsite meteorological data, or five (5) years of representative, hourly National Weather Service (NWS) observations. Because no on-site data existed, NWS data were relied upon in this analysis. The meteorological data used in this analysis was processed and provided by SCDHEC using the AERMOD meteorological preprocessor (AERMET), version 06341. This data was downloaded from the SCDHEC website. The data consisted of hourly surface observation data from the Greenville/Spartanburg, South Carolina meteorological station and concurrent upper air sounding data from the Greensboro, South Carolina meteorological station for meteorological years 2002 through 2006.

#### 1.5 Background Concentrations

Background concentrations accounting for the impacts from natural background levels, minor background sources, and long-range transport, were added to the facility impact and regional sources impact to demonstrate compliance with the NAAQS/SCAAQS. Pollutant concentrations to estimate ambient air background concentrations were obtained from the monitoring data available on the SCDHEC website. TSP background concentrations are based on TSP monitor located in Greenville. There is no PM<sub>10</sub> monitor located in Greenville. PM<sub>10</sub> background values for this modeling analysis were chosen as the largest 24-hour background value from the city of Columbia. All of the other PM<sub>10</sub> monitors in the state are either farther away or are located in cities that are smaller than Greenville. Table 2 summarizes the background concentrations for the modeling analysis.

Table 2. Ambient Air Background Concentrations

|                       | TSP               | $PM_{10}$          |                   |  |
|-----------------------|-------------------|--------------------|-------------------|--|
|                       | Annual<br>Average | 24-Hour<br>Average | Annual<br>Average |  |
| Concentration (µg/m³) | 28.6              | 61                 | 22.1              |  |
| Monitor               | Greenville CHD    | Columbia –         | Olympia Site      |  |

## 2.0 DISPERSION MODELING RESULTS

Modeling of the facility's potential emissions using AERMOD-PRIME demonstrates compliance with NAAQS/SCAAQS for  $PM_{10}$  and TSP. 3M's maximum impacts computed by AERMOD-PRIME were added to the background concentrations to determine a total predicted impact. The total impacts were compared to the applicable air quality standards presented in Table 3. A CD-ROM containing all electronic modeling files from the analysis is included with this memorandum.

Table 3. 3M Greenville PM<sub>10</sub>/TSP Ambient Air Impacts

|                                                | TSP               | PM                 | 10                |
|------------------------------------------------|-------------------|--------------------|-------------------|
| Impact                                         | Annual<br>Average | 24-Hour<br>Average | Annual<br>Average |
| AERMOD Results                                 | 15.74°            | 65.00 <sup>d</sup> | 15.74°            |
| Background Concentration                       | 28.6              | 61                 | 22.1              |
| Total Predicted Impact                         | 44.34             | 126.00             | 37.84             |
| National Ambient Air Quality Standard          |                   | 150 <sup>b</sup>   | 50ª               |
| South Carolina Ambient Air Quality<br>Standard | 75ª               | 150 <sup>b</sup>   | 50 <sup>a</sup>   |

<sup>&</sup>lt;sup>a</sup> Never to be exceeded.

b Not to be exceeded more than once per year per receptor location.

<sup>&</sup>lt;sup>c</sup> Concentration represents the highest high-1<sup>st</sup> high from the one five-year model runs.

d Concentration represents the highest high-6<sup>th</sup> high from the one five-year model runs.

G3 Film Line – Air Toxics – December 2006

# Table 2 Modeling Results for Two Air Toxics; Vinylidene Chloride and Formaldehyde

# Greenville Air Toxic Dispersion Modeling Analysis G-3 Film Line Summary of Selected Model Options

<u>Option</u> <u>Selection</u>

Model AERMOD version 04300

Regulatory Default Mode Default wind profile exponents

Default wind speed categories

Default potential temperature gradients

Building Downwash BPIP-PRIME version 04274

Meteorological Data 5 year period 1987 -1991

Surface Station Greenville/Spartanburg, SC (NWS Station 03870)

Upper Air Station Athens, GA (NWS Station 13873)

Elevation 948 ft

Obtained from agency website

(http://www.scdhec.gov/eqc/baq/html/modeling.html)

Dispersion Algorithm Rural

Terrain Elevated, meters

Processed with AERMAP

Pollutants Unit Emission Rate (1 g/s)

Allowable Increment

MAAC 15 ug/m3 24-Hour

Receptor Grids

Spacing 100 m

Extent From property line extending to 1000 m
Property Line Receptors Surrounding entire property at 50 m spacing

On-Site Receptors None included

# Air Dispersion Modeling Summary Air Toxics G-3 Film Line 3M Greenville, South Carolina December 21, 2006

Air Dispersion Modeling was conducted to demonstrate attainment with the air toxics thresholds for formaldehyde emissions from the proposed G-3 film line at 3M's Greenville, South Carolina facility. All modeling input data is presented in Table 1. The results are attached.

AERMOD-PRIME (version 043000) was used with regulatory default options selected. Receptors were placed around the property line at 50-meter spacing. A fine receptor grid with 100-meter spacing was extended out to 1000 meters beyond the property line, and a coarse receptor grid with 1000-meter spacing was extended out to 10 kilometers beyond the property line.

Building downwash was calculated using BPIP-PRIME. Five years of meteorological data was selected per the Air Modeling Guideline. Data collected at Greenville/Athens from 1987-1991 was used with an elevation of 948 feet.

## 3M Greenville Air Toxics Modeling Analysis **Modeling Results** December 21, 2006

Formaldehyde Emission Rate (g/s) = 0.045
Modeling was completed for stack vent 026-005 using an unit emission rate of 1 g/s.
Modeled results were multiplied by the actual formaldehyde emission rate to obtain results for comparison to the MAAC.

## **Model Output**

| Pollutant             | Averaging<br>Period | Year | 24-Hour<br>Maximum<br>Modeled Off-<br>Property Impact<br>(ug/m3) @ 1 g/s | Maximum<br>Modeled Off-<br>Property<br>Impact (ug/m3)<br>for<br>formaldehyde | South Carolina<br>*MAAC Standard<br>8 Limit (ug/m3) | Off-Property<br>Impact Exceedes<br>State Limit?<br>(yes/no) |
|-----------------------|---------------------|------|--------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------|
| Formaldehyde          | 24-hour             | 1987 | 76.86                                                                    | 3.48                                                                         | 15                                                  | no                                                          |
|                       |                     | 1988 | 71.63                                                                    | 3.24                                                                         | 15                                                  | no                                                          |
|                       |                     | 1989 | 77.55                                                                    | 3.51                                                                         | 15                                                  | no                                                          |
|                       |                     | 1990 | 91.33                                                                    | 4.14                                                                         | 15                                                  | no                                                          |
| Maximum Allowable Amb |                     | 1991 | 94.63                                                                    | 4.29                                                                         | 15                                                  | no                                                          |

Maximum Allowable Ambient Air Concentration (MAAC)

Level 1

| Vent#      | Source             | Process  | Air Toxics          | CAS#     | lbs/hr   | lbs/day  | MAAC  | Ib/hr / MAAC | Above Threshold? |
|------------|--------------------|----------|---------------------|----------|----------|----------|-------|--------------|------------------|
|            |                    |          |                     |          |          |          |       | 1            | 5.00E-04         |
| 026-010-10 | Prefenter Coatings | Pre-Tent | Ethyl acrylale      | 140-88-5 | 0.08     | 2.02     | 102.5 | 8.21E-04     | Yes              |
|            |                    | Coater 1 | Methyl Methacrylate | 80-62-6  | 0.03     | 0.67     | 10250 | 2.74E-06     | No               |
|            | <b>,</b>           |          | Acrylonitrile       | 107-13-1 | 0.02     | 0.47     | 22.5  | 8.72E-04     | Yos              |
|            | 1                  | }        | Formaldehyde        | 50-00-0  | 0.36     | 8.63     | 15    | 2.40E-02     | Yes              |
|            |                    |          | Methanol            | 67-56-1  | 0.72     | 17.22    | 1310  | 5.48E-04     | Yes              |
|            | ļ                  |          | Triethylamine       | 121-44-8 | 0.18     | 4 31     | 207   | 8.67F:-04    | Yes              |
|            | 1                  | )        | Vinylidene Cl       | 75-35-4  | 1.09     | 26.10    | 99    | 1.10E-02     | Yes              |
|            |                    |          | Hexane              | 110-54-3 | 7.25E-04 | 1.74E-02 | 900   | 8.06E-07     | No               |
|            | ľ                  |          | MEK                 | 78-93-3  | 0.12     | 3.00     | 14750 | 8.47E-06     | No               |
|            | }                  | }        | Ethylene Glycol     | 107-21-1 | 0.05     | 1.13     | 650   | 7.23E-05     | No               |
|            |                    |          | Ethylene Imine      | 151-56-4 | 9.45E-09 | 2.27E-07 | 5     | 1.89E-09     | No               |

Levol 2

| Vent#      | Source             | Process  | Air Toxics     | CAS#     | lbs/hr | lbs/day | MAAC  | Table 3 Value | A * B  | Above<br>MAAC? |
|------------|--------------------|----------|----------------|----------|--------|---------|-------|---------------|--------|----------------|
|            |                    | l        | L              | 1        | [      | A       |       | В             |        |                |
| 026-010-10 | Pretenter Coatings | Pre-Tent | Ethyl acrylate | 140-88-5 | 0.08   | 2.02    | 102.5 | 15.50         | 31.30  | No             |
|            | 1                  | Coater 1 | Acrylonitrile  | 107-13-1 | 0.02   | 0.47    | 22.5  | 15.50         | 7.30   | No             |
|            |                    |          | Formaldehyde   | 50-00-0  | 0.36   | 8.63    | 15    | 15.50         | 133.73 | Yes            |
|            |                    |          | Methanol       | 67-56-1  | 0.72   | 17.22   | 1310  | 15.50         | 266.98 | No             |
|            |                    |          | Triethylamine  | 121-44-8 | 0.18   | 4.31    | 207   | 15.50         | 66.74  | No             |
|            |                    |          | Vinylidene Cl  | 75-35-4  | 1.09   | 26.10   | 99    | 15.50         | 404.62 | Yes            |

## Level 3 Screening Model

| Model | ling | Parameters. |
|-------|------|-------------|
|-------|------|-------------|

| G-3 Pre-Tent                |        |
|-----------------------------|--------|
| Height (ft)                 | 56     |
| Height (m)                  | 17.07  |
| Diameter (ft)               | 1.78   |
| Diametor (m)                | 0.54   |
| Exit Velocity (ft/sec)      | 33.33  |
| Exit Velocity (m/sec)       | 10.16  |
| Temp (Γ)                    | 70 UO  |
| Temp (K)                    | 294.00 |
| Distance from Property (ft) | 295.00 |
| Distance from Property (rn) | 89.94  |
|                             |        |

#### Building 26 Parmoters:

| Height (ft) | 50.00  |
|-------------|--------|
| Height (m)  | 15.24  |
| Length (ft) | 600.00 |
| Length (m)  | 182.93 |
| Width (ft)  | 150.00 |
| Width (m)   | 45.73  |
|             |        |

#### Emission Rate: Pollutant

| Poliutant     | lb/hr | q/s   |
|---------------|-------|-------|
| Formaldehyde  | 0.359 | 0.045 |
| Vinylidene CI | 1.088 | 0.137 |

| Screen Modeling at 1 g/s (unit | Emission Rate) | ug/m3 |
|--------------------------------|----------------|-------|
| Screening Modeling Result      | @ 400 ft       | 758   |

Screening Converted to Actual Emission Rates for Each Pollutant

| The state of the s |                |         |              |             |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|--------------|-------------|--|--|--|--|--|--|
| 1_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 24-hour |              |             |  |  |  |  |  |  |
| Pollutant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-hour (ug/m3) | (ug/m3) | MAAC (ug/m3) | Above MAAC? |  |  |  |  |  |  |
| Formaldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34.33          | 24.03   | 15           | Yes         |  |  |  |  |  |  |
| Vinylidene CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 103.88         | 72.72   | 99           | No          |  |  |  |  |  |  |

```
*** SCREEN3 MODEL RUN ***

*** VERSION DATED 96043 ***
```

#### G3 Pre-Tenter

SIMPLE TERRAIN INPUTS: SOURCE TYPE POINT 1.00000 EMISSION RATE (G/S) = STACK HEIGHT (M) = STK INSIDE DIAM (M) = STK EXIT VELOCITY (M/S) = 10.1600STK GAS EXIT TEMP (K) = 294.0000AMBIENT AIR TEMP (K) = 293.0000RECEPTOR HEIGHT (M) = .0000 URBAN/RURAL OPTION BUILDING HEIGHT (M) = RURAL = 15.2400 MIN HORIZ BLDG DIM (M) = 45.7300 MAX HORIZ BLDG DIM (M) = 182.9300

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = .025 M\*\*4/S\*\*3; MCM. FLUX = 7.500 M\*\*4/S\*\*2.

\*\*\* FULL METEOROLOGY \*\*\*

\*\*\* SCREEN AUTOMATED DISTANCES \*\*\*

\*\*\* TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES \*\*\*

| DIST<br>(M) | CONC<br>(UG/M**3) | STAB | U10M<br>(M/S) | USTK<br>(M/S) | MIX HT<br>(M) | PLUME<br>HT (M) | SIGMA<br>Y (M) | SIGMA<br>2 (M) | DWASH |
|-------------|-------------------|------|---------------|---------------|---------------|-----------------|----------------|----------------|-------|
| 100         |                   |      |               |               |               |                 |                |                |       |
| 100.        | 743.5             | 6    | 1.5           | 2.C           | 10000.0       | 17.68           | 4.07           | 9.61           | SS    |
| 200.        | 613. <del>9</del> | 6    | 1.5           | 2.0           | 10000.0       | 17.68           | 7.73           | 12.76          | SS    |
| 300.        | 447.E             | 6    | 2.5           | 2.0           | 10000.0       | 17.68           | 11.23          | 13.74          | SS    |
| 400.        | 387.7             | 6    | 1.C           | 1.3           | 10000.0       | 29.68           | 14.64          | 12.78          | SS    |
| 500.        | 345.1             | 6    | 1.0           | 1.3           | 10000.0       | 19.68           | 17.97          | 13.76          | SS    |
| 600.        | 305.8             | 6    | 1.0           | 1.3           | 10000.0       | 19.68           | 21.24          | 14.44          | SS    |
| 700.        | 277.2             | 5    | 1.0           | 1.3           | 10000.0       | 19.68           | 24.46          | 15.29          | SS    |
| 80G.        | 252.8             | 6    | 1.0           | 1.3           | 10000.0       | 19.68           | 27.63          | 16.12          | SS    |
| 900.        | 231.€             | 6    | 1.0           | 1.3           | 10000.0       | 19.68           | 30.78          | 16.92          | SS    |
| 1000.       | 213.2             | 5    | 1.0           | 1.3           | 10000.0       | 19.68           | 33.88          | 17.70          | SS    |

MAXIMUM 1-HR CONCENTRATION AT OR BEYOND 100. M: 122. 758.0 6 1.5 2.0 10000.0 17.68 4.93 10.64 SS

DWASH= MEANS NO CALC MADE (CONC = 0.0)
DWASH=NO MEANS NO BUILDING DOWNWASH USED
DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED
DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED
DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3\*LB

\*\*\* SCREEN DISCRETE DISCANCES \*\*\*

\*\*\* TERPAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES \*\*\*

| DIST<br>(M) | CONC<br>(CG/M**3 | ) STAB                                             | U10M<br>(M/S) | USTK<br>(M/S) | MIX HT     | PLUME<br>HT (M) | SIGMA<br>Y (M) | SIGMA<br>Z (M) | DWASH |
|-------------|------------------|----------------------------------------------------|---------------|---------------|------------|-----------------|----------------|----------------|-------|
| 89.         | 731.8            | 6                                                  | 2.0           | 2.7           | 10000.0    | 17.29           | 3.65           | 10.02          | SS    |
| DWASH=      | MEANS N          | O CALC MAD                                         | E (CON        | C = 0.0       | <b>)</b> } |                 |                |                |       |
|             |                  | O BUILDING                                         |               |               |            |                 |                |                |       |
|             |                  | UBER-SNYDE                                         |               |               |            |                 |                |                |       |
| DWASH=SS    | S MEANS S        | CHULMAN-SC                                         | IRE DO        | WNWASH        | USED       |                 |                |                |       |
| DWASH=N     | A MEANS D        | OWNWASH NO                                         | T APPL        | ICABLE,       | X<3*LB     |                 |                |                |       |
|             |                  | *******                                            |               |               |            |                 |                |                |       |
|             |                  | RY (Defaul                                         |               |               |            |                 |                |                |       |
|             |                  | VITY CALCU                                         |               |               |            |                 |                |                |       |
| WITH OF     |                  | CREEN CAVI                                         | LA WOD        | El            |            |                 |                |                |       |
| *****       | (BRODE,          | _988)<br>*******                                   | *****         | *****         |            |                 |                |                |       |
|             |                  |                                                    |               |               |            |                 |                |                |       |
| *** CAV     | ITY CALCU        | LATION - 1 = . /S) = 9 /S) = 9 S) = 9 S = 1 M) = 8 | ***           | <b>π</b> ≯    | * CAVITY   | CALCULAT        | rion - 2       | * = *          |       |
| CONC (U     | JG/M**3)         | = .                                                | 0000          | C             | ONC (UG/   | M**3)           | = .(           | 0000           |       |
| CRIT WS     | 6 610M (M        | /S) = 9                                            | 9.99          | C             | RIT WS @   | 10M (M/S)       | = 99           | .99            |       |
| CRIT WS     | 3 HS (M          | /S) = 9                                            | 9.99          | C             | RIT WS @   | HS (M/S)        | = 99           | .99            |       |
| DIFUTIO     | MS (M/           | s) = 9                                             | 9.99          | D             | ומסוייטבו: | WS (M/S)        | = 99           | .99            |       |
| CAVITY      | HT' (M)          | = 1                                                | 5.73          | C             | AVITY HT   | (M)             | <b>=</b> 15    | .24            |       |
| CAVITY      | LENGTH (         | M) = 8                                             | 0.02          | С             | AVITY LE   | NGTH (M)        | = 45           | 5.73           |       |
| ALONGWI     | () MIC GM        | K) = 4                                             | 5.73          | A             | LONGWIND   | DIM (M)         | = 182          | 2.93           |       |
| CYALLA CO   | ONG NOT C        | ALCULATED                                          | FOR CR        | IT WS >       | 20.0 M/    | S. CONC         | SET = 0.       | C              |       |
| *******     | *****            | *****                                              | ****          | *****         |            |                 |                |                |       |
| ENL         | OF CAVI          | TY CALCULA                                         | TIONS         |               |            |                 |                |                |       |
| *****       | ****             | *****                                              | * # * * * *   | *****         |            |                 |                |                |       |
|             |                  |                                                    |               |               |            |                 |                |                |       |
|             |                  | *****                                              |               |               |            |                 |                |                |       |
| ***         | SUMMARY (        | OF SCREEN S                                        | MODEL I       | RESULTS       | ***        |                 |                |                |       |
| CAUCULAT    | TION             | MAX CON                                            | ב ב           | ST TO         | TERRAII    | N               |                |                |       |
| PROCEDU     | RE               | (UG/M**3)                                          | M/            | AX (M)        | HT (M      | )               |                |                |       |
|             |                  | 758.0                                              |               |               |            |                 |                |                |       |
|             |                  |                                                    |               |               |            |                 |                |                |       |
|             |                  | *****                                              |               |               |            |                 |                |                |       |
|             |                  | CLUDE BACKO                                        |               |               |            | R #             |                |                |       |

Greenville Site – Criteria Pollutants, Air Toxics – June/July 2004

## Air Dispersion Modeling Summary Criteria Pollutants 3M Greenville, South Carolina June 3, 2004

Air Dispersion Modeling was conducted to demonstrate attainment with the National Ambient Air Quality Standards (NAAQS) for criteria pollutant emissions from 3M's Greenville, South Carolina facility. Site modeling of Hazardous Air Pollutants (HAPs) was also conducted. All modeling input data is presented in Table 1. The NAAQS results are attached in Table 2, and the HAPs results are in table 3. A brief summary of selected model options is presented in Table 4.

ISCST (version 02035) was used with regulatory default options selected. Receptors were placed around the property line at 50-meter spacing. A fine receptor grid with 100-meter spacing was extended out to 1000 meters beyond the property line, and a coarse receptor grid with 1000-meter spacing was extended out to 10 kilometers beyond the property line.

Building downwash was calculated using BPIP. Five years of meteorological data was selected per the Air Modeling Guideline. Data collected at Greenville/Athens from 1987-1991 was used with an anemometer height of 7.0 meters.

#### Air Dispersion Modeling Summary Criteria Pollutants 3M Greenville, South Carolina July 8, 2004

Facility-wide air dispersion modeling was conducted to demonstrate attainment with the South Carolina Maximum Allowable Ambient Air Concentration (MAAC) Standard 8 for Toxic Air Pollutant emissions from 3M's Greenville, South Carolina facility. All modeling input data is attached.

ISCST (version 02035) was used with regulatory default options selected. The exhaust velocity of the modeled stacks was set to 0.01 meters per second since they exhaust at 45 degrees down. Receptors were placed around the property line at 50-meter spacing. A fine receptor grid with 100-meter spacing was extended out to 1000 meters beyond the property line, and a coarse receptor grid with 1000-meter spacing was extended out to 10 kilometers beyond the property line.

Building downwash was calculated using BPIP. Five years of meteorological data was selected per the Air Modeling Guideline. Data collected at Greenville/Athens from 1987-1991 was used with an anemometer height of 7.0 meters.

## Table 4 3M Greenville Dispersion Modeling Analysis Criteria Pollutants Summary of Selected Model Options

<u>Option</u> <u>Selection</u>

Model ISCST3 version 02035

Regulatory Default Mode All regulatory defaults selected

Building Downwash BPIP version 95086

Meteorological Data 5 year period 1987 -1991

Surface Station Greenville/Spartanburg, SC (NWS Station 03870)

Upper Air Station Athens, GA (NWS Station 13873)

Anemometer Height 7 meters

Dispersion Algorithm Rural

Terrain Elevated, meters

Pollutants NOx, PM10, SOx, CO

Allowable Limits

NOx 100 ug/m3 Annual

PM 10 50 ug/m3 Annual, 150 ug/m3 24-hour SOx 80 ug/m3 Annual, 365 ug/m3 24-hour,

1300 ug/m3 3-hour

CO 10,000 ug/m3 8-hour, 40,000 ug/m3 1-hour

Receptor Grids

Spacing 100 m

Extent From property line extending to 1000 m, and from

property line extending to 10 km at 1 km spacing.

Surrounding entire property at 50 m spacing

Property Line Receptors

On-Site Receptors None included

Table 1 3M Greenville Criteria Pollutant Modeling Analysis Model Input Data January, 2004

|                                  |                | <u> </u>       |           |             |             |             |             |             |             |           |          |          |
|----------------------------------|----------------|----------------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-----------|----------|----------|
|                                  |                |                |           | со          | PM          | SOx         | NOx         | voc         |             |           | Exhaust  | Stack    |
|                                  |                |                | Elevation | Emission    | Emission    | Emission    | Emission    | Emission    | Stack       | Stack     | Velocity | Diameter |
| Source Description               | X Location (m) | Y-Location (m) | (ft)      | Rate (#/hr) | Height (ft) | Temp. (F) | (ft/min) | (Ft)     |
| Resin Train #1 & 2               | 375424.27      | 3845865.47     | 283       | 0           | 0           | 0           | 0           | 0.1599      | 104.8       | 310       | 2        | 0.67     |
| Steam Jet Vertical Ejector       | 375364.00      | 3845821.00     | 281       | 0           | 0           | 0           | 0           | 6.995       | 12.5        | 303       | 1000     | 8.33     |
| Steam Jet Vertical Ejector       | 375361.00      | 3845820.00     | 281       | 0           | 0           | 0           | 0           | 6.995       | 6.0         | 304       | 900      | 15.00    |
| Virgin Ethylene Glycol           | 375357.48      | 3845758.49     | 281       | 0           | 0           | 0           | 0           | 0.412       | 17.6        | 294       | 2        | 0.33     |
| Recovered Ethylene Glycol Tank   | 375348.23      | 3845756.54     | 281       | 0           | 0           | 0           | 0           | 0.006       | 19.1        | 294       | 2        | 0.33     |
| Recovered Methanol Storage       | 375384.24      | 3845713.54     | 281       | 0           | 0           | 0           | 0           | 0.37        | 18.2        | 294       | 2        | 0.90     |
| TEG Wash Tank West               | 375325.00      | 3845900.00     | 279       | 0           | 0           | 0           | 0           | 0.004       | 32.2        | 350       | 498      | 0.30     |
| TEG Wash Tank East               | 375326.00      | 3845901.00     | 279       | 0           | 0           | 0           | 0           | 0.004       | 31.9        | 350       | 600      | 0.30     |
| Filter Wash Station              | 375329.00      | 3845901.00     | 279       | 0           | 0           | 0           | 0           | 0.130       | 36.2        | 313       | 1008     | 1.30     |
| Extruder                         | 375393.00      | 3846020.00     | 284       | 0           | 0           | 0           | 0           | 0.13        | 66.3        | 294       | 2        | 30.10    |
| G1 Tenter                        | 375414.48      | 3845937.03     | 282       | 0           | 0           | 0           | 0           | 9.00        | 51.1        | 403       | 1396     | 1.40     |
| Airveying G1 Coater Grinder      | 375394.03      | 3845983.11     | 284       | 0           | 1.68        | 0           | 0           | 0.00        | 14.0        | 310       | 2628     | 1.30     |
| G2 Extruder                      | 375394.26      | 3845893.47     | 281       | 0           | 0           | 0           | 0           | 0.22        | 60.0        | 294       | 205      | 1.80     |
| Airveying G2 Edge Trim           | 375363.53      | 3845985.04     | 283       | 0           | 0.04        | 0           | 0           | 0           | 3.6         | 294       | 2350     | 2.00     |
| Airveying                        | 375391.19      | 3845981.99     | 284       | 0           | 0.04        | 0           | 0           | 0           | 19.1        | 294       | 2        | 0.30     |
| P Coater                         | 375395.96      | 3845913.18     | 281       | 0           | 0           | 0           | 0           | 4.60        | 64.1        | 332       | 5000     | 1.17     |
| P Ctr                            | 375392.84      | 3845912.52     | 281       | 0           | 0           | 0           | 0           | 4.60        | 64.1        | 329       | 2714     | 1.17     |
| G Coater                         | 375383.16      | 3845976.91     | 284       | 0           | 0           | 0           | 0           | 4.60        | 69.2        | 330       | 2363     | 2.17     |
| G Ctr                            | 375381.36      | 3845976.50     | 284       | 0           | 0           | 0           | 0           | 4.60        | 69.2        | 330       | 2495     | 2.17     |
| Airveying                        | 375377.88      | 3845858.47     | 282       | 0           | 0.02        | 0           | 0           | 0           | 3.6         | 294       | 1930     | 0.75     |
| Airveying                        | 375379.98      | 3845854.74     | 282       | 0           | 0.03        | 0           | 0           | 0           | 3.9         | 294       | 4122     | 0.83     |
| Box/Tote airveying               | 375314.96      | 3845842.62     | 281       | 0           | 0.03        | 0           | 0           | 0           | 8.6         | 294       | 7393     | 1.17     |
| Flake Silo Airveying G1/G2 Dryer | 375335.53      | 3845880.29     | 280       | 0           | 0.04        | 0           | 0           | 0           | 8.8         | 294       | 7814     | 1.00     |
| Airveying                        | 375392.89      | 3845890.53     | 281       | 0           | 0.03        | 0           | 0           | 0           | 14.4        | 311       | 2        | 1.17     |
| Building/Vacuum                  | 375314.22      | 3845903.10     | 279       | 0           | 0.04        | 0           | 0           | 0           | 45.0        | 294       | 2820     | 5.00     |
| Steam Boiler #1 - Gas Fired      | 375412.17      | 3845814.48     | 282       | 4.8636      | 0.4400      | 0.03        | 5.79        | 0.31850     | 41.0        | 561       | 1518     | 3.00     |
| Steam Boiler #1 - Fuel Oil Fired | 375412.17      | 3845814.48     | 282       | 2.0387      | 1.3456      | 2.90        | 8.1549      | 0.08150     | 41.0        | 561       | 1518     | 3.00     |
| Steam Boiler #2 - Gas Fired      | 375413.51      | 3845808.18     | 282       | 3.4776      | 0.3146      | 0.02        | 4.14        | 0.22770     | 50.0        | 561       | 612      | 4.00     |
| Steam Boiler #2 - Fuel Oil Fired | 375413.51      | 3845808.18     | 282       | 1.4577      | 0.3146      | 0.02        | 5.831       | 0.22770     | 50.0        | 561       | 612      | 4.00     |
| Born Boiler - Gas Fired          | 375416.23      | 3845831.37     | 282       | 1.512       | 0.1368      | 0.01        | 1.8         | 0.09900     | 80.0        | 644       | 488      | 3.00     |
| Born Boiler - Fuel Oil Fired     | 375416.23      | 3845831.37     | 282       | 0.6338      | 0.4190      | 9.02        | 2.54        | 0.02540     | 80.0        | 644       | 488      | 3.00     |
| CARO Boiler - Gas Fired          | 375417.63      | 3845825.12     | 282       | 2.352       | 0.2128      | 0.02        | 2.8         | 0.15400     | 55.0        | 608       | 759      | 3.00     |
| CARO Boiler - Fuel Oil Fired     | 375417.63      | 3845825.12     | 282       | 0.9859      | 0.6507      | 14.00       | 3.9437      | 0.03940     | 55.0        | 608       | 759      | 3.00     |
| 017J001                          | 375568.00      | 3845762.00     | 283       | 0           | 2.314       | 0.00        | 0           | 0           | 40.0        | 70        | 1486     | 3.41     |
| 017J003                          | 375510.00      | 3845730.00     | 287       | 9.20E-02    | 0.036       | 0.00198     | 0.367       | 0           | 46.0        | 320       | 1528     | 2.49     |
| 017J005                          | 375528.00      | 3845730.00     | 287       | 3.7         | 0.174       | 0.008       | 0.43        | 0           | 46.0        | 370       | 1250     | 2.99     |
| 017J006                          | 375525.00      | 3845745.00     | 286       | 3.7         | 0.174       | 0.008       | 0.43        | 0           | 46.0        | 370       | 1250     | 2.99     |
| 020E008                          | 375534.00      | 3845696.00     | 287       | 0           | 0.197       | 0           | 0           | 0           | 52.0        | 82        | 2        | 20.44    |
| 020E009                          | 375478.00      | 3845673.00     | 283       | 0           | 0.309       | 0           | 0           | 0           | 47.0        | 70        | 2        | 33.99    |
| 020E003                          | 375581.00      | 3845710.00     | 285       | 0           | 8.60E-02    | 0           | 0           | 0           | 42.7        | 180       | 2        | 14.37    |
| 020E005                          | 375577.00      | 3845699.00     | 286       | 0           | 0.686       | 0           | 0           | 0           | 43.2        | 90        | 2        | 34.45    |
| 020E006                          | 375582.00      | 3845700.00     | 286       | 0           | 0.686       | 0           | 0           | 0           | 43.0        | 79        | 2        | 45.47    |

## Table 1 3M Greenville Criteria Pollutant Modeling Analysis Model Input Data January, 2004

| Source Description             | X Location (m) | Y-Location (m) | Elevation<br>(ft) | CO<br>Emission<br>Rate (#/hr) | PM<br>Emission<br>Rate (#/hr) | SOx<br>Emission<br>Rate (#/hr) | NOx<br>Emission<br>Rate (#/hr) | VOC<br>Emission<br>Rate (#/hr) | Stack<br>Height (ft) | Stack<br>Temp. (F) | Exhaust<br>Velocity<br>(ft/min) | Stack<br>Diameter<br>(Ft) |
|--------------------------------|----------------|----------------|-------------------|-------------------------------|-------------------------------|--------------------------------|--------------------------------|--------------------------------|----------------------|--------------------|---------------------------------|---------------------------|
| 020E058 (HM2 Oven)             | 375524.53      | 3845724.39     | 287               | 0.4                           | 0.04                          | 0.003                          | 0.48                           | 0                              | 48.0                 | 176                | 3207                            | 2.42                      |
| 020E053                        | 375528.00      | 3845693.00     | 286               | 0                             | 1.1                           | 0                              | 0                              | 0                              | 56.9                 | 70                 | 2                               | 10.76                     |
| 020E055                        | 375531.00      | 3845687.00     | 286               | 0                             | 0.308                         | 0                              | 0                              | 0                              | 60.7                 | 79                 | 2                               | 69.95                     |
| 020E060 (Bulk Rubber Silo)     | 375475.88      | 3845678.01     | 284               | 0                             | 0.05                          | 0                              | 0                              | 0                              | 45.6                 | 70                 | 5160                            | 0.67                      |
| 020E061 (Rubber Feed Hopper)   | 375533.00      | 3845718.47     | 288               | 0                             | 0.03                          | 0                              | 0                              | 0                              | 48.0                 | 70                 | 3294                            | 0.67                      |
| 020E062 (Cmpd. Exh. (Melters)) | 375528.83      | 3845718.47     | 288               | 0                             | 0.07                          | 0                              | 0                              | 0                              | 48.0                 | 70                 | 3255                            | 1.08                      |

# Table 2 3M Greenville Criteria Pollutant Modeling Analysis Modeling Results January, 2004

| Pollutant | Averaging<br>Period | Year | Maximum<br>Modeled Off-<br>Property Impact<br>(ug/m3) | Background<br>Concentration<br>(ug/m3) | Total Off-<br>Property<br>Impact<br>(ug/m3) | NAAQS Limit<br>(ug/m3) | Total Off-Property<br>Impact exceedes<br>Allowable<br>Impact? (yes/no) |
|-----------|---------------------|------|-------------------------------------------------------|----------------------------------------|---------------------------------------------|------------------------|------------------------------------------------------------------------|
| NO(x)     | Annual              | 1987 | 23.43                                                 | 13.2                                   | 36.6                                        | 100                    | no                                                                     |
|           |                     | 1988 | 23.15                                                 | 13.2                                   | 36.4                                        | 100                    | no                                                                     |
|           |                     | 1989 | 23.73                                                 | 13.2                                   | 36.9                                        | 100                    | no                                                                     |
|           |                     | 1990 | 21.20                                                 | 13.2                                   | 34.4                                        | 100                    | no                                                                     |
|           |                     | 1991 | 27.72                                                 | 13.2                                   | 40.9                                        | 100                    | no                                                                     |

| Pollutant | Averaging<br>Period | Year | Maximum<br>Modeled Off-<br>Property Impact<br>(ug/m3) | (ug/m3) | Total Off-<br>Property<br>Impact<br>(ug/m3) | NAAQS Limit<br>(ug/m3) | Total Off-Property<br>Impact exceedes<br>Allowable<br>Impact? (yes/no) |
|-----------|---------------------|------|-------------------------------------------------------|---------|---------------------------------------------|------------------------|------------------------------------------------------------------------|
| SO(x)     | 3-hour              | 1987 | 257.85                                                | 40      | 297.9                                       | 1300                   | no                                                                     |
|           |                     | 1988 | 257.14                                                | 40      | 297.1                                       | 1300                   | no                                                                     |
|           |                     | 1989 | 287.69                                                | 40      | 327.7                                       | 1300                   | no                                                                     |
|           |                     | 1990 | 281.52                                                | 40      | 321.5                                       | 1300                   | no                                                                     |
|           |                     | 1991 | 268.50                                                | 40      | 308.5                                       | 1300                   | no                                                                     |
|           |                     |      |                                                       |         |                                             |                        |                                                                        |
| SO(x)     | 24-hour             | 1987 | 123.84                                                | 18      | 141.8                                       | 365                    | no                                                                     |
|           |                     | 1988 | 99.83                                                 | 18      | 117.8                                       | 365                    | no                                                                     |
|           |                     | 1989 | 116.52                                                | 18      | 134.5                                       | 365                    | no                                                                     |
|           |                     | 1990 | 110.38                                                | 18      | 128.4                                       | 365                    | no                                                                     |
|           |                     | 1991 | 120.74                                                | 18      | 138.7                                       | 365                    | no                                                                     |
|           |                     |      |                                                       |         |                                             |                        |                                                                        |
| SO(x)     | Annual              | 1987 | 22.47                                                 | 4       | 26.5                                        | 80                     | no                                                                     |
|           |                     | 1988 | 22.75                                                 | 4       | 26.8                                        | 80                     | no                                                                     |
|           |                     | 1989 | 21.40                                                 | 4       | 25.4                                        | 80                     | no                                                                     |
|           |                     | 1990 | 18.69                                                 | 4       | 22.7                                        | 80                     | no                                                                     |
|           |                     | 1991 | 25.80                                                 | 4       | 29.8                                        | 80                     | no                                                                     |

# Table 2 3M Greenville Criteria Pollutant Modeling Analysis Modeling Results January, 2004

| Pollutant | Averaging<br>Period | Year | Maximum<br>Modeled Off-<br>Property Impact<br>(ug/m3) | Background<br>Concentration<br>(ug/m3) | Total Off-<br>Property<br>Impact<br>(ug/m3) | NAAQS Limit<br>(ug/m3) | Total Off-Property<br>Impact exceedes<br>Allowable<br>Impact? (yes/no) |
|-----------|---------------------|------|-------------------------------------------------------|----------------------------------------|---------------------------------------------|------------------------|------------------------------------------------------------------------|
| PM10      | 24-hour             | 1987 | 37.50                                                 | 56                                     | 93.5                                        | 150                    | no                                                                     |
|           |                     | 1988 | 31.22                                                 | 56                                     | 87.2                                        | 150                    | no                                                                     |
|           |                     | 1989 | 37.03                                                 | 56                                     | 93.0                                        | 150                    | no                                                                     |
|           |                     | 1990 | 36.39                                                 | 56                                     | 92.4                                        | 150                    | no                                                                     |
|           |                     | 1991 | 39.07                                                 | 56                                     | 95.1                                        | 150                    | no                                                                     |
| PM10      | Annual              | 1987 | 8.89                                                  | 34                                     | 42.9                                        | 50                     | no                                                                     |
|           |                     | 1988 | 8.53                                                  | 34                                     | 42.5                                        | 50                     | no                                                                     |
|           |                     | 1989 | 8.40                                                  | 34                                     | 42.4                                        | 50                     | no                                                                     |
|           |                     | 1990 | 7.93                                                  | 34                                     | 41.9                                        | 50                     | no                                                                     |
|           |                     | 1991 | 9.61                                                  | 34                                     | 43.6                                        | 50                     | no                                                                     |

| Pollutant | Averaging<br>Period | Year | Maximum<br>Modeled Off-<br>Property Impact<br>(ug/m3) | Background<br>Concentration<br>(ug/m3) | Total Off-<br>Property<br>Impact<br>(ug/m3) | NAAQS Limit<br>(ug/m3) | Total Off-Property<br>Impact exceedes<br>Allowable<br>Impact? (yes/no) |
|-----------|---------------------|------|-------------------------------------------------------|----------------------------------------|---------------------------------------------|------------------------|------------------------------------------------------------------------|
| CO        | 1-hour              | 1987 | 278.46                                                | 9,700                                  | 9,978                                       | 40,000                 | no                                                                     |
|           |                     | 1988 | 294.13                                                | 9,700                                  | 9,994                                       | 40,000                 | no                                                                     |
|           |                     | 1989 | 279.17                                                | 9,700                                  | 9,979                                       | 40,000                 | no                                                                     |
|           |                     | 1990 | 287.56                                                | 9,700                                  | 9,988                                       | 40,000                 | no                                                                     |
|           |                     | 1991 | 308.77                                                | 9,700                                  | 10,009                                      | 40,000                 | no                                                                     |
|           |                     |      |                                                       |                                        |                                             |                        |                                                                        |
| CO        | 8-hour              | 1987 | 127.94                                                | 6,600                                  | 6,728                                       | 10,000                 | no                                                                     |
|           |                     | 1988 | 108.89                                                | 6,600                                  | 6,709                                       | 10,000                 | no                                                                     |
|           |                     | 1989 | 119.35                                                | 6,600                                  | 6,719                                       | 10,000                 | no                                                                     |
|           |                     | 1990 | 127.09                                                | 6,600                                  | 6,727                                       | 10,000                 | no                                                                     |
|           |                     | 1991 | 125.86                                                | 6,600                                  | 6,726                                       | 10,000                 | no                                                                     |

## Table 3 3M Greenville Hazardous Air Pollutant Modeling Analysis Modeling Results June, 2004

Model Input

| Stack Description          | X Location<br>(m) | Y-Location        | Elevation (ft) | Acetaldehyde<br>Emission Rate | Ethylene Glycol<br>Emission Rate | Rate   | Emission    | Toluene<br>Emission | Stack | Stack | Exhaust<br>Velocity | Diameter |
|----------------------------|-------------------|-------------------|----------------|-------------------------------|----------------------------------|--------|-------------|---------------------|-------|-------|---------------------|----------|
| Resin Train #1 & 2         | 375424.27         | (m)<br>3845865.47 | 283            |                               | (#/hr)                           | (#/hr) | Rate (#/hr) | Rate (#/hr)         |       |       |                     | (Ft)     |
|                            |                   |                   |                | 0.0002                        | 0.0146                           | 0.0272 | 0.0004      | 0                   | 104.8 | 310   | 564                 | 0.7      |
| Steam Jet Vertical Ejector | 375364            | 3845821           | 281            | 2.528                         | 1.397                            | 3.069  | 0           | 0                   | 12.5  | 303   | 1000                | 8.3      |
| Steam Jet Vertical Ejector | 375361            | 3845820           | 281            | 2.528                         | 1.397                            | 3.069  | 0           | 0                   | 6.0   | 304   | 900                 | 15.0     |
| TEG Wash Tank West         | 375325            | 3845900           | 279            | 4.00E-03                      | 0                                | 0      | 0           | 0                   | 32.2  | 350   | 498                 | 0.3      |
| TEG Wash Tank East         | 375326            | 3845901           | 279            | 4.00E-03                      | 0                                | 0      | 0           | 0                   | 31.9  | 350   | 600                 | 0.3      |
| Filter Wash Station        | 375329            | 3845901           | 279            | 0.13                          | 0                                | 0      | 0           | 0                   | 36.2  | 313   | 1008                | 1.3      |
| Extruder                   | 375393            | 3846020           | 284            | 0.1                           | 0                                | 0      | 0           | 0                   | 66.3  | 294   | 2                   | 30.1     |
| G2 Extruder                | 375394.26         | 3845893.47        | 281            | 0.22                          | 0                                | 0      | 0           | 0                   | 60.0  | 294   | 205                 | 1.8      |
| HM-1 LAB Exhaust           | 375524            | 3845696           | 287            | 0                             | 0                                | 0      | 0           | 2.06                | 64.0  | 136   | 990                 | 2.7      |

**Model Output** 

| Pollutant    | Averaging<br>Period | Year | Maximum<br>Modeled Off-<br>Property<br>Impact<br>(ug/m3) | South Carolina<br>*MAAC<br>Standard 8<br>Limit (ug/m3) | Off-Property<br>Impact Exceedes<br>State Limit?<br>(yes/no) |
|--------------|---------------------|------|----------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|
| Acetaldehyde | 24-hour             | 1987 | 66.38                                                    | 1800                                                   | no                                                          |
|              |                     | 1988 | 58.88                                                    | 1800                                                   | no                                                          |
|              |                     | 1989 | 61.50                                                    | 1800                                                   | no                                                          |
|              |                     | 1990 | 112.35                                                   | 1800                                                   | no                                                          |
|              |                     | 1991 | 68.65                                                    | 1800                                                   | no                                                          |

| Pollutant | Averaging<br>Period | Year | Maximum<br>Modeled Off-<br>Property<br>Impact<br>(ug/m3) | South Carolina<br>*MAAC<br>Standard 8<br>Limit (ug/m3) | Off-Property<br>Impact Exceedes<br>State Limit?<br>(yes/no) |
|-----------|---------------------|------|----------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|
| Methanol  | 24-hour             | 1987 | 78.93                                                    | 1310                                                   | no                                                          |
|           |                     | 1988 | 68.91                                                    | 1310                                                   | no                                                          |
|           |                     | 1989 | 72.83                                                    | 1310                                                   | no                                                          |
|           |                     | 1990 | 135.18                                                   | 1310                                                   | no                                                          |
|           |                     | 1991 | 82.11                                                    | 1310                                                   | no                                                          |

## Table 3 3M Greenville Hazardous Air Pollutant Modeling Analysis Modeling Results June, 2004

| Pollutant       | Averaging<br>Period | Year | Maximum<br>Modeled Off-<br>Property<br>Impact<br>(ug/m3) | South Carolina<br>*MAAC<br>Standard 8<br>Limit (ug/m3) | Off-Property<br>Impact Exceedes<br>State Limit?<br>(yes/no) |
|-----------------|---------------------|------|----------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|
| Ethylene Glycol | 24-hour             | 1987 | 35.71                                                    | 650                                                    | no                                                          |
|                 |                     | 1988 | 31.20                                                    | 650                                                    | no                                                          |
|                 |                     | 1989 | 32.96                                                    | 650                                                    | no                                                          |
|                 |                     | 1990 | 61.16                                                    | 650                                                    | no                                                          |
|                 |                     | 1991 | 37.15                                                    | 650                                                    | no                                                          |

| Pollutant   | Averaging<br>Period | Year | Maximum<br>Modeled Off-<br>Property<br>Impact<br>(ug/m3) | South Carolina<br>*MAAC<br>Standard 8<br>Limit (ug/m3) | Off-Property<br>Impact Exceedes<br>State Limit?<br>(yes/no) |
|-------------|---------------------|------|----------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|
| 1,4-Dioxane | 24-hour             | 1987 | 0.00128                                                  | 450                                                    | no                                                          |
|             |                     | 1988 | 0.00129                                                  | 450                                                    | no                                                          |
|             |                     | 1989 | 0.00169                                                  | 450                                                    | no                                                          |
|             |                     | 1990 | 0.00187                                                  | 450                                                    | no                                                          |
|             |                     | 1991 | 0.00152                                                  | 450                                                    | no                                                          |

| Pollutant | Averaging<br>Period | Year | Maximum<br>Modeled Off-<br>Property<br>Impact<br>(ug/m3) | South Carolina<br>*MAAC<br>Standard 8<br>Limit (ug/m3) | Off-Property<br>Impact Exceedes<br>State Limit?<br>(yes/no) |
|-----------|---------------------|------|----------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|
| Toluene   | 24-hour             | 1987 | 13.78                                                    | 2000                                                   | no                                                          |
|           |                     | 1988 | 6.28                                                     | 2000                                                   | no                                                          |
|           |                     | 1989 | 9.39                                                     | 2000                                                   | no                                                          |
|           |                     | 1990 | 7.77                                                     | 2000                                                   | no                                                          |
|           |                     | 1991 | 7.51                                                     | 2000                                                   | no                                                          |

<sup>\*</sup> Maximum Allowable Ambient Air Concentration (MAAC)

### Attachment G

Federal & State Regulatory Applicability Review

#### 3M Greenville Film Plant South Carolina and Federal Air Quality Requirements Summary Table

|                                   |                                                                                                                                                                                    |                | POTENTIALLY APPLICABLE /                                                                                                      |                                                                                                                                                                                                          |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EQUIPMENT                         | ID#                                                                                                                                                                                | TYPE           | APPLICABLE REQUIREMENT                                                                                                        | COMPLIANCE METHOD PROVISION                                                                                                                                                                              |
| Various Units                     | 01: PP1, PC1, PC2, ICR1, 02: PP2,PC3, PC4, ICR2, RGDT 04: DMTT 07: G2GR, G2ET, 08: 09: RBFG                                                                                        | State          | Visible emissions from process industries (Reg. 62.5, Standard 4, Section IX).                                                | Limit opacity to < 20% - began construction or modification after 12/31/85.                                                                                                                              |
| Various Units                     | 01: EGT, EGR1, MER1, 02: EGR2, MER2, 03: EJT1, 04: REGT, MEOH, VEGT 05: VSILO, FOT1, FOT2 06: 07: G2DT, G2XT, G2PC, G2GC, G2C, DTOW2 09: FSILO, PTZR, RSILO 10: 11: 12: 13: 14: 15 | State          | Visible emissions from process industries (Reg. 62.5, Standard 4, Section IX).                                                | Limit opacity to < 40% - began construction or modification before 12/31/85.                                                                                                                             |
| Silo                              | <u>05</u> : VSILO                                                                                                                                                                  | State          | Other manufacturing from process industries (Reg. 62.5, Standard 4, Section VIII).                                            | Limit particulate matter emissions from material handling system to < 53.12 lbs/hour.                                                                                                                    |
| G1 Film Line                      | <u>06</u>                                                                                                                                                                          | State          | Other manufacturing from process industries (Reg. 62.5, Standard 4, Section VIII).                                            | Limit particulate matter emissions from material handling system to < 6.30 lbs/hour.                                                                                                                     |
| 1, G2 and G3 Film<br>Lines        | 06: G1TN <u>i</u> 07: G2PC, G2GC, G2C; 15: G3GC1, G3C                                                                                                                              | State          | Surface coating of paper, vinyl, and fabric (Reg. 62.5, Standard 5, Section II, Part C).                                      | Limit volatile organic compound content of coatings to 2.9 lbs/gallon, excluding water and exempt solvents.  The definition of "paper coating" includes coating in related web processes on plastic film |
| Visual Converting<br>Process      | 08                                                                                                                                                                                 | State          | Other manufacturing from process industries (Reg. 62.5, Standard 4, Section VIII).                                            | Limit particulate matter emissions from material handling system to < 0.04 lbs/hour.                                                                                                                     |
| PET Reclaim Process               | <u>09</u>                                                                                                                                                                          | State          | Other manufacturing from process industries (Reg. 62.5, Standard 4, Section VIII).                                            | Limit particulate matter emissions from material handling system to < 11.89 lbs/hour.                                                                                                                    |
| Box/Tote Material<br>Handling     | 10                                                                                                                                                                                 | State          | Other manufacturing from process industries (Reg. 62.5, Standard 4, Section VIII).                                            | Limit particulate matter emissions from material handling system to < 27.63 lbs/hour.                                                                                                                    |
| G1 and G2                         | 06: DOTW1;<br>07: DOTW2                                                                                                                                                            | State          | Other manufacturing from process industries (Reg. 62.5, Standard 4, Section VIII).                                            | Limit particulate matter emissions from material handling system to < 34.24 lbs/hour.                                                                                                                    |
| Steam Boiler 1;<br>Steam Boiler 2 | 11 and 12<br>(each)                                                                                                                                                                | State          | Emissions from Fuel Burning Operations (Reg. 62.5, Standard 1, Section II).                                                   | Limit particulate matter to < 0.6 lb/10E6 BTU                                                                                                                                                            |
|                                   |                                                                                                                                                                                    | State<br>State | Emissions from Fuel Burning Operations (Reg. 62.5, Standard 1, Section III).  Permit Requirements (Reg. 62.1, Secion II, Part | Limit SO2 to < 3.5 lb/10E6 BTU  Limit SO2 to < 40 tpy                                                                                                                                                    |
|                                   |                                                                                                                                                                                    |                | H).                                                                                                                           | Simil 302 to \ 40 tpy                                                                                                                                                                                    |
| Steam Boiler 1;<br>Steam Boiler 2 | 11 and 12                                                                                                                                                                          | State          | Permit Requirements (Reg. 62.1, Secion II, Part H).                                                                           | Limit SO2 % content ≤ 0.5%                                                                                                                                                                               |

Document Date: 6/25/2010 8:52 AM

### 3M Greenville Film Plant South Carolina and Federal Air Quality Requirements Summary Table

| EQUIPMENT                                    | ID#                                         | ТҮРЕ    | POTENTIALLY APPLICABLE /<br>APPLICABLE REQUIREMENT                                                                                                  | COMPLIANCE METHOD PROVISION                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------|---------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Born Oil Heater;<br>Carotek Oil Heater       | <u>13</u> and <u>14</u>                     | State   | Emissions from Fuel Burning Operations (Reg. 62.5, Standard 1, Section II).                                                                         | Limit particulate matter to < 0.6 lb/10E6 BTU                                                                                                                                                                                                                                                                                                             |
|                                              |                                             | State   | Emissions from Fuel Burning Operations (Reg. 62.5, Standard 1, Section III).                                                                        | Limit SO2 to < 3.5 lb/10E6 BTU                                                                                                                                                                                                                                                                                                                            |
|                                              |                                             | State   | Permit Requirements (Reg. 62.1, Secion II, Part H).                                                                                                 | Limit SO2 to < 40 tpy                                                                                                                                                                                                                                                                                                                                     |
|                                              |                                             | State   | Permit Requirements (Reg. 62.1, Secion II, Part H).                                                                                                 | Limit SO2 % content ≤ 0.5%                                                                                                                                                                                                                                                                                                                                |
| Carotek Oil Heater                           | <u>14</u>                                   | State   | Permit Requirements (Reg. 62.1, Secion II, Part H).                                                                                                 | Limit Fuel Consumption < 1,098,950 gallons/yr<br>No. 2 Fuel Oil                                                                                                                                                                                                                                                                                           |
| G1, G2 and G3 Film<br>Lines                  | <u>06; 07</u> & <u>15</u>                   | Federal | 40 CFR 60 Subpart RR - Standards of<br>Performance for New Stationary Sources -<br>Pressure Sensitive Tape and Label Surface<br>Coating Operations. | DOES NOT APPLY - 3M film lines do not make tapes or labels                                                                                                                                                                                                                                                                                                |
| Sources Subject to a<br>Subpart of 40 CFR 63 |                                             | Federal | 40 CFR 63 Subpart A, General Provisions                                                                                                             | General provisions including notification, recordkeeping, etc.                                                                                                                                                                                                                                                                                            |
| Resin Train 1 and 2                          | 01, 01A<br>02, 02A;<br>03<br>04: MEOH, REGT | Federal | 40 CFR 63 Subpart JJJ - Polymers and Resins IV                                                                                                      | Group 2 Process Vent Batch Mass Input; Group 2 Wastewater. Limit 3,504 batches/yr Primary product; SSM; Notify process changes, Report requirements.                                                                                                                                                                                                      |
| Resin Tank                                   | <u><b>04</b></u> :MEOH                      | Federal | 40 CFR 63 Subpart JJJ - Polymers and Resins IV                                                                                                      |                                                                                                                                                                                                                                                                                                                                                           |
| Resin Train 1, 2 and<br>unk Farm             | 01; 01A;<br>02; 02A;<br>03; 04              | Federal | 40 CFR 63 Subpart H - HON referenced by JJJ<br>for LDAR                                                                                             | LDAR - Organic HAPs. Method 21, Sensory                                                                                                                                                                                                                                                                                                                   |
| G1, G2 and G3 Film<br>Lines                  | <u>06; 07</u> & <u>15</u>                   | Federal | 40 CFR 63 Subparts JJJJ. "Paper and Other Web Coating" One of the national emission standards for hazardous air pollutants from surface coating.    | 40 CFR Part 63 JJJJ applies - facility is a Title III Major Source, AND there is at least 1 web coating line at the facility: 95% overall HAP emission reduction as calculated over a calendar month; or 0.04 kg of HAPs emitted/kg of coating applied each calendar month; or 0.20 kg of HAPs emmitted/kg of coating solids applied each calendar month. |
| Resin Train 1 and 2                          | 01: PC1, PC2, ICR1,<br>02: PC3, PC4, ICR2,  | Federal | 40 CFR 60 Subpart DDD- Standards of<br>Performance for New Stationary Sources - VOC<br>emissions from Polymer mfg industry (Includes<br>PET)        | DOES NOT APPLY - source not subject to regulation (not continuous processes)                                                                                                                                                                                                                                                                              |
| Train 1 and Train 2                          | 01, 01A<br>02, 02A                          | Federal | 40 CFR 60 Subpart RRR- Standards of<br>Performance for New Stationary Sources - VOC<br>emissions from SOCMI Reactor processes                       | DOES NOT APPLY - Source not subject to regulation (does not make any of the listed chemicals)                                                                                                                                                                                                                                                             |
| G1, G2 and G3 Film<br>Lines                  | <u>06; 07</u> & <u>15</u>                   |         | 40 CFR 60 Subpart VVV - Standards of<br>Performance for New Stationary Sources -<br>Polymeric Coating of Supporting Substrates<br>facilities.       | DOES NOT APPLY - Source not subject to regulation                                                                                                                                                                                                                                                                                                         |
| Sources Subject to a<br>Subpart of 40 CFR 60 |                                             | Federal | 40 CFR 60 Subpart A - General provisions.                                                                                                           | General provisions including notification, recordkeeping, etc.                                                                                                                                                                                                                                                                                            |
| Boilers and Heaters                          | 11;12<br>13 & 14                            | Federal | 40 CFR 63 Subparts DDDDD- "Industrial Boilers and Process Heaters"                                                                                  | Units may be subject to regulation- Rule is under Public Notice, anticipated to be final in December 2010.                                                                                                                                                                                                                                                |

Document Date: 6/25/2010 8:52 AM

#### 3M Greenville Film Plant South Carolina and Federal Air Quality Requirements Summary Table

|                                        |                           | T       | POTENTIALLY APPLICABLE /                                                                                                                |                                                                                                                                                                                                                                                                 |
|----------------------------------------|---------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EQUIPMENT                              | ID #                      | TYPE    | APPLICABLE REQUIREMENT                                                                                                                  | COMPLIANCE METHOD PROVISION                                                                                                                                                                                                                                     |
| G1, G2 and G3 Film<br>Lines            | <u>06; 07</u> & <u>15</u> | Federal | 40 CFR 63 Subpart HHHHH- Miscellaneous Coating Manufacturing                                                                            | NO REQUIREMENTS - All coatings are used on-<br>site on a JJJJ regulated line.                                                                                                                                                                                   |
| Resin/Film Baghouses                   | <u>06; 07</u> & <u>15</u> |         | 40 CFR 64 - EPA regulations on Compliance<br>Assurance Monitoring                                                                       |                                                                                                                                                                                                                                                                 |
| Generator (Propane<br>fuel);           | N/A                       | Federal | 40 CFR 60 Subpart JJJJ- Standards of<br>Performance for New Stationary Sources - Spark<br>Ignition Internal Combustion Engines          | DOES NOT APPLY - Unit installed before July 1, 2009.                                                                                                                                                                                                            |
| Generator (Propane<br>fuel);           | N/A                       | Federal | 40 CFR 63 Subpart ZZZZ - Standards of<br>Performance for New Stationary Sources -<br>Reciprocating Internal Combustion Engines          | NO REQUIREMENTS- Unit is < 500 brake HP and is use for emergency only                                                                                                                                                                                           |
| Generator - Fire pump<br>(diesel fuel) | N/A                       | Federal | 40 CFR 63 Subpart ZZZZ - Standards of<br>Performance for New Stationary Sources -<br>Reciprocating Internal Combustion Engines          | NO REQUIREMENTS- Unit is < 500 brake HP and is use for emergency only                                                                                                                                                                                           |
|                                        |                           | Federal | 40 CFR 60 Subpart IIII- Standards of<br>Performance for New Stationary Sources -<br>Compression Ignition Internal Combustion<br>Engines | Must comply with emission standards in table 4 to this subpart for all pollutants (manufacturer-certified):  NMHC+NOX: 10.5 g/kW-hr (7.8 g/HP-hr)  CO: 3.5 g/kW-hr (2.6 g/HP-hr)  PM: 0.54 g/kW-hr (0.40 g/HP-hr)  Use of required recordkeeping and reporting. |
| cility                                 | N/A                       |         | 40 CFR 70 Operating Program (Title V Major Sources)                                                                                     | As determined by state permit authority                                                                                                                                                                                                                         |
|                                        |                           |         | 40 CFR 82 Subpart F - Ozone Depleting<br>Susbtances                                                                                     | Certification, recordkeeping and reporting requirements as specified in Subpart F                                                                                                                                                                               |
|                                        | i                         | Federal | 40 CFR 68- Risk Management Program/Chemical                                                                                             | NO RMP chemicals are present greated than threshold quantities in a single process.  General duty and monitor RMs                                                                                                                                               |
|                                        |                           |         | 40 CFR 82 Supbart H - Ozone depleting substances Halon Manufacture, Release and Disposal, and Technician Training                       | Proper handling, disposal and technician trainig as specified in Subpart H.                                                                                                                                                                                     |

Document Date: 6/25/2010 8:52 AM

BOARD: Paul C. Aughtry, III Chairman Edwin H. Cooper, III Vice Chairman Steven G. Kisner

Secretary



M. David Mitchell, MD Glenn A. McCall

Coleman F. Buckhouse, MD

BOARD:

Henry C. Scott

### C. Earl Hunter, Commissioner Promoting and protecting the health of the public and the environment

July 14, 2010

Tom Waldon 3M Company – Greenville Film 1400 Perimeter Road Greenville, SC 29605

Re: Completeness Determination of Part 70 Air Quality Permit Application

3M Company - Greenville Film (Permit No. 1200-0073)

Greenville County

Greenville, South Carolina

Dear Mr. Waldon:

The South Carolina Department of Health and Environmental Control, Bureau of Air Quality (Bureau), on June 28, 2010, received the Part 70 Air Quality (Title V Operating) permit application submitted by 3M Company for the above-referenced facility. The completeness review period for the application officially began on this date. Upon review, the application has been deemed complete and the application shield granted, effective June 28, 2010.

The permit application will now undergo a technical review by the assigned permit engineer. Please remember that any requests from the Bureau for additional technical information must meet specified deadlines. Failure to do so could result in the removal of the application shield.

Should you have any questions concerning the application shield or technical review, please contact the appropriate staff member, Janelle Trowhill, of this office, at (803) 898-4108 or trowhijj@dhec.sc.gov.

Sincerely,

Elizabeth J. Basil, Director

Engineering Services Division

Elychen j Raul

Bureau of Air Quality

EJB:CDH:el

cc: Bill Williamson, Region 2, Greenville EQC Office

Title V Permit File: 1200-0073

### AIR DISPERSION MODELING SUMMARY SHEET

| COMPANY/FACILITY:         | 3M Company Greenville Film |                         |
|---------------------------|----------------------------|-------------------------|
| <b>LOCATION (COUNTY):</b> | Greenville, SC             | <b>DATE:</b> 12/22/2010 |
| PERMIT NUMBER:            | TV-1200-0148-1200-0073     | REVIEWED BY: MRH        |
| REASON MODELED:           | CONSTRUCTION PERMIT        | CONDITIONAL MAJOR       |
|                           | NEW OPERATING PERMIT       | X TITLE V PERMIT        |
| _ X                       | OPERATING PERMIT RENEWAL   | TITLE V OPFLEX          |
|                           | AIR COMPLIANCE DEMO        | PSD MAJOR               |
| MODELED FOR: X            | NAAQS                      | X PSD INCREMENT         |
| ·                         | _ AIR TOXICS               |                         |
| OTHER:                    | EXEMPTION                  | DEFERRAL                |
|                           | DE MINIMIS                 | X COLLOCATED (Yes)      |

**PROJECT DESCRIPTION:** The 3M Greenville Film Plant is requesting a Title V renewal. This facility is co-located with the 3M Greenville Tape Plant (1200-0148). All sources from both facilities are included in this modeling summary sheet.

**SUMMARY OF MODELING ANALYSIS & RESULTS:** The facility submitted AERMOD modeling for the Film Plant and the Tape Plant. The PM/PM10 pollutant was modeled for standards No. 2 & No. 7. There have been no changes to any other pollutant emissions. The 3M Film Plant ID # 1200-0073 is collocated with the Tape Plant ID # 1200-0148. The two facilities are modeled together. The summary sheet will be filed under each facility's permit number. The Film plant was modeled in March (3/24/10) for a Title V renewal. All changes are in listed in **bold**.

| Pollutant        | Averaging<br>Time | Model Used                                                                      | Maximum Modeled<br>Concentration<br>(μg/m³) | Background<br>Concentration<br>(µg/m³) | Total<br>(µg/m³) | Standard<br>(µg/m³) | % of<br>Standard |
|------------------|-------------------|---------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------|------------------|---------------------|------------------|
| TSP              | Annual            | AERMOD                                                                          | 16.30                                       | 27.1                                   | 43               | 75                  | 57%              |
| PM <sub>10</sub> | 24 Hour           | AERMOD                                                                          | 61.26*                                      | 50.7                                   | 112              | 150                 | 75%              |
| 1 14110          | Annual            | Annual AERMOD 61.26 Annual AERMOD 14.98 3 Hour ISCST3 287.6 4 Hour ISCST3 120.7 | 14.98                                       | 19.8                                   | 35               | 50                  | 70%              |
|                  | 3 Hour            | ISCST3                                                                          | 287.68                                      | 68.4                                   | 356.08           | 1300                | 27%              |
| SO <sub>2</sub>  | 24 Hour           | ISCST3                                                                          | 120.74                                      | 34.2                                   | 154.94           | 365                 | 42%              |
|                  | Annual            | ISCST3                                                                          | 25.80                                       | 7.9                                    | 33.70            | 80                  | 42%              |
| NO <sub>X</sub>  | Annual            | ISCST3                                                                          | 27.73                                       | 28.3                                   | 56.03            | 100                 | 56%              |
| СО               | 1 Hour            | ISCST3                                                                          | 325.45                                      | 5405                                   | 5730.45          | 40,000              | 14%              |
|                  | 8 Hour            | ISCST3                                                                          | 127.17                                      | 3910                                   | 4037.17          | 10,000              | 40%              |

| STANDARD NO. 8 – TOXIC AIR POLLUTANTS LEVEL I DE MINIMIS ANALYSIS |               |                            |                         |  |  |  |  |  |
|-------------------------------------------------------------------|---------------|----------------------------|-------------------------|--|--|--|--|--|
| POLLUTANT                                                         | CAS<br>NUMBER | EMISSION RATE<br>(LBS/DAY) | DE MINIMIS<br>(LBS/DAY) |  |  |  |  |  |
| Diethanolamine                                                    | 111-42-2      | 1.44                       | 1.548                   |  |  |  |  |  |
| Glycol Ethers                                                     | N/A           | 30.00                      | +                       |  |  |  |  |  |
| Hexane                                                            | 110-54-3      | 0.3194                     | 10.800                  |  |  |  |  |  |
| Methyl Ethyl Ketone                                               | 78-93-3       | 3.00                       | 177.000                 |  |  |  |  |  |
| Methyl Isobutyl Ketone                                            | 108-10-1      | 0.24                       | 24.600                  |  |  |  |  |  |
| 2,2,4-Trimethylpentane                                            | 540-84-1      | 0.312                      | 105.000                 |  |  |  |  |  |
| Ethylene Imine                                                    | 151-56-4      | 2.27E-07                   | 0.060                   |  |  |  |  |  |
| + To be determined.                                               |               |                            |                         |  |  |  |  |  |

| STANDARD NO. 2 - M                                | ODELED A | AQS EMIS         | SION RAT        | ES (LBS/HI      | R)    |
|---------------------------------------------------|----------|------------------|-----------------|-----------------|-------|
| STACK ID                                          | TSP      | PM <sub>10</sub> | SO <sub>2</sub> | NO <sub>x</sub> | CO    |
|                                                   | <u> </u> | Plant            | T               | <del></del>     | т     |
| 003E_001 Steam Boiler #1                          | 1.37     | 0.95             | 30.30           | 21.23           | 4.86  |
| 003E_002 Steam Boiler #2                          | 0.98     | 0.68             | 4.33            | 15.18           | 3.48  |
| 003E_003 Born Oil Heater                          | 0.42     | 0.30             |                 |                 |       |
| 003E_004 Carotek Oil Heater                       | 0.66     | 0.46             | 14.65           | 10.29           | 2.35  |
| 007E_005 G2 Edge Trim                             | 1.52E-03 | 1.52E-03         |                 |                 |       |
| 007E_006 G1GR                                     | 0.016    | 0.016            |                 |                 |       |
| 007E_007 G2 Grinder                               | 0.004    | 0.004            |                 |                 |       |
| 007E_008 Dryer Tower G2(BH5)*                     | 9.52E-03 | 9.52E-03         |                 |                 |       |
| 009E_014 Flake Silo                               | 1.29E-02 | 1.29E-02         |                 |                 |       |
| 009E_015 Box/Tote Airveying                       | 1.27E-04 | 1.27E-04         |                 |                 |       |
| 888E_001 Virgin Silo                              | 0.020    | 0.018            |                 |                 |       |
| 888E_002 Reclaim Silo                             | 0.030    | 0.013            |                 |                 |       |
| 888E_035                                          | 0.002    | 0.001            | '               |                 |       |
| 888E_037 PET Reclaim Building                     | 0.040    | 0.13             |                 |                 |       |
| 888E_038 PET Reclaim Vacuum                       | 0.17     | 0.006            |                 |                 |       |
| 888E_039                                          |          | 0.95E-03         |                 |                 |       |
| 026E_006 G-3 Floor Scrap Grinder 1                | 0.00024  | 0.015            |                 |                 |       |
| 026E_007 G-3Floor Scrap Grinder 2                 | 0.006    | 0.014            |                 |                 |       |
| 026E_008 G-3 Floor Scrap Grinder 3                | 0.00107  | 0.00107          |                 |                 |       |
| 026E_021 G-3 Die/Casting Wheel                    | 0.119    | 0.616            |                 |                 |       |
| 026E_023 G-3 Die/Casting Wheel                    | 0.119    | 0.616            |                 |                 |       |
|                                                   | TAPE     | PLANT            |                 |                 |       |
| 888E_15 HM2 Coating Line Bulk<br>Storage Silo     | 0.06     | 0.06             |                 |                 |       |
| 888E_019 HM2 Coating Line Bulk<br>Storage Silo #2 | 0.06     | 0.06             |                 |                 |       |
| 17J_001 17J Baghouse                              | 2.30     | 2.30             |                 |                 |       |
| 17J_003 J012 Flame Treater                        | 0.036    | 0.21E-02         | 0.002           | 0.367           | 0.092 |
| 17J_005/006 J010 Tenter Oven                      | 0.045    | 0.09             | 0.016           | 0.860           | 7.400 |
| 20E_005 J016, 017 &J013                           |          | 0.34             |                 |                 |       |
| 20E_006 <b>J016, 017 &amp;J013</b>                | 0.55     | 0.55             |                 |                 |       |
| 20E_008 A002 Airvey                               | 0.197    | 0.01             |                 |                 |       |
| 20E_009 A001 Airvey                               | 0.789    | 0.022            |                 |                 |       |
| 20E_053 A004 Resin Hopper                         | 0.560    | 0.560            |                 |                 |       |
| 20E_055 A008 Melters A & B                        | 0.817    | 0.817            |                 |                 |       |

| STANDARD NO. 8 - M |                                         | ermit ID #1200-0 |                       |         |  |  |
|--------------------|-----------------------------------------|------------------|-----------------------|---------|--|--|
| MODELING STACK ID  | SOURCE ID                               | Acetaldehyde     | Antimony<br>Compounds | Benzene |  |  |
|                    |                                         | 72-07-0          | Ñ/A                   | 71-43-2 |  |  |
| 001_002            | G1 Tenter                               |                  | 0.017                 |         |  |  |
| 001E_057           | G1XT G1<br>Extruder                     | 0.13             |                       |         |  |  |
| 001E_097           | PP2 Esterification System #2            | 0.0001           |                       |         |  |  |
| 001E_098           | Polycon #4                              | 0.0001           |                       |         |  |  |
| 001E_099           | Polycon #3                              | 0.0001           |                       |         |  |  |
| 001E_101           | Polycon #2                              | 0.0001           |                       |         |  |  |
| 001E_102           | Polycon #1                              | 0.0001           |                       |         |  |  |
| 001E_103           | PP1 Esterification System #1            | 0.0001           |                       |         |  |  |
| 001E_112           | Numerous sources                        | 0.0002           |                       |         |  |  |
| 007E_001           | G2GCG<br>Coater                         |                  | 0.017                 |         |  |  |
| 007E_002           | G2GC G Coater                           |                  | 0.017                 |         |  |  |
| 007E_003           | G2PC P Coater                           |                  | 0.017                 |         |  |  |
| 007_004            | G2PC P Coater                           |                  | 0.017                 |         |  |  |
| 007E_073           | G2 Extruder                             | 0.22             |                       |         |  |  |
| 009E_005           | Triethylene<br>Glycol Wash<br>Tank West | 0.004            |                       |         |  |  |
| 009E_005           | Triethylene<br>Glycol Wash<br>Tank East | 0.004            |                       |         |  |  |
| 009E_011           | Filter Wash<br>Station                  | 0.13             |                       |         |  |  |
| 888E_003           | EJT1 Vertical<br>Ejector Tower          | 2.528            |                       |         |  |  |
| 888E_004           | EJT2 Vertical<br>Ejector Tower          | 2.528            |                       |         |  |  |
| 20E_001            | C002 LAB<br>Station and Dryer           |                  |                       | 0.037   |  |  |
| FACILITY TO        | ΓAL                                     | 5.54             | 0.085                 | 0.037   |  |  |

| STANDARD NO. 8 - MODELED AIR TOXIC EMISSION RATES TABLE 3 (LBS/HR) Film Plant-Permit ID #1200-0073 |                                |              |                    |              |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------|--------------------------------|--------------|--------------------|--------------|--|--|--|--|--|
| MODELING STACK ID                                                                                  | SOURCE ID                      | Ethylbenzene | Ethylene<br>Glycol | Formaldehyde |  |  |  |  |  |
|                                                                                                    |                                | 100-41-4     | 107-21-1           | 50-00-0      |  |  |  |  |  |
| 001_002                                                                                            | G1 Tenter                      |              | 0.17               | 0.007        |  |  |  |  |  |
| 001E_097                                                                                           | PP2 Esterification System #2   |              | 0.00187            |              |  |  |  |  |  |
| 001E_098                                                                                           | Polycon #4                     |              | 0.00187            |              |  |  |  |  |  |
| 001E_099                                                                                           | Polycon #3                     |              | 0.00187            |              |  |  |  |  |  |
| 001E_101                                                                                           | Polycon #2                     |              | 0.00187            |              |  |  |  |  |  |
| 001E_102                                                                                           | Polycon #1                     |              | 0.00187            |              |  |  |  |  |  |
| 001E_103                                                                                           | PP1 Esterification System #1   |              | 0.00187            |              |  |  |  |  |  |
| 001E_112                                                                                           | Numerous sources               |              | 0.0146             |              |  |  |  |  |  |
| 007E_001                                                                                           | G2GCG<br>Coater                |              | 0.17               | 0.007        |  |  |  |  |  |
| 007E_002                                                                                           | G2GC G Coater                  |              | 0.17               | 0.007        |  |  |  |  |  |
| 007E_003                                                                                           | G2PC P Coater                  |              | 0.17               | 0.007        |  |  |  |  |  |
| 007_004                                                                                            | G2PC P Coater                  |              | 0.17               | 0.007        |  |  |  |  |  |
| 007E_073                                                                                           | G2 Extruder                    |              |                    |              |  |  |  |  |  |
| 888E_003                                                                                           | EJT1 Vertical<br>Ejector Tower |              | 1.397              |              |  |  |  |  |  |
| 888E_004                                                                                           | EJT2 Vertical<br>Ejector Tower |              | 1.397              |              |  |  |  |  |  |
| 888E_005                                                                                           | Methanol Tank                  |              | 6.2E-06            |              |  |  |  |  |  |
| 888E_006                                                                                           | Virgin EG Tank                 |              | 0.17               | 0.007        |  |  |  |  |  |
| 888E_035                                                                                           | C002 LAB<br>Station and Dryer  |              | 0.00187            |              |  |  |  |  |  |
| 20E_001                                                                                            | C002 LAB<br>Station and Dryer  | 36.254       |                    |              |  |  |  |  |  |
| 88E_012                                                                                            | LAB Tank                       | 0.1206       |                    |              |  |  |  |  |  |
| 88E_013                                                                                            | Solvent Tank                   | 0.17         |                    |              |  |  |  |  |  |
| 88E_014                                                                                            | Backup Solvent<br>Tank         | 0.17         |                    |              |  |  |  |  |  |
| FACILITY TO                                                                                        | TAL                            | 36.7146      | 3.84169            | 0.042        |  |  |  |  |  |

| STANDARD NO. 8 - MODELED AIR TOXIC EMISSION RATES TABLE 5 (LBS/HR) Film Plant-Permit ID #1200-0073 |                               |          |                        |           |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------|-------------------------------|----------|------------------------|-----------|--|--|--|--|--|
| MODELING STACK ID                                                                                  | SOURCE ID                     | Toluene  | Vinylidene<br>Chloride | Xylene    |  |  |  |  |  |
|                                                                                                    |                               | 108-88-3 | 75-35-4                | 1330-20-7 |  |  |  |  |  |
| 020E_001                                                                                           | C002 LAB<br>Station and Dryer | 42.437   |                        | 120.508   |  |  |  |  |  |
| 020E_006                                                                                           | E001/E003<br>Grinders         | 0.009    |                        | 0.027     |  |  |  |  |  |
| 888E_012                                                                                           | LAB Tank                      | 0.077    |                        | 0.405     |  |  |  |  |  |
| 888E_013                                                                                           | Solvent Tank                  | 0.199    |                        | 0.565     |  |  |  |  |  |
| 888E_014                                                                                           | Backup Solvent<br>Tank        | . 0.199  |                        | 0.565     |  |  |  |  |  |
| 026E-005                                                                                           | G-3 Coater #1                 |          | 0.449                  |           |  |  |  |  |  |
| FACILITY TO                                                                                        | TAL                           | 42.921   | 0.449                  | 122.079   |  |  |  |  |  |

| COLLOCATION SOURCE CROSS-REFERENCE TABLE      |                        |  |  |  |  |  |  |
|-----------------------------------------------|------------------------|--|--|--|--|--|--|
| STACK IDENTIFICATION                          | FACILITY PERMIT NUMBER |  |  |  |  |  |  |
| 003_001 Steam Boiler #1- Gas Fired            | Permit ID# 1200-0073   |  |  |  |  |  |  |
| 003E_002 Steam Boiler #2 – Gas Fired          | Permit ID# 1200-0073   |  |  |  |  |  |  |
| 003E_004 CAARO Boiler -Gas Fired              | Permit ID# 1200-0073   |  |  |  |  |  |  |
| 007E_005 Airveying G1 Coater Grinder          | Permit ID# 1200-0073   |  |  |  |  |  |  |
| 007E_006 Airveying                            | Permit ID# 1200-0073   |  |  |  |  |  |  |
| 007E_007 Airveying G2 Edge Trim               | Permit ID# 1200-0073   |  |  |  |  |  |  |
| 007E_008 Airveying                            | Permit ID# 1200-0073   |  |  |  |  |  |  |
| 009E_014 Flake Silo Airveying G1/G2 Dryer     | Permit ID# 1200-0073   |  |  |  |  |  |  |
| 009E_015 Box/Tote Airveying                   | Permit ID# 1200-0073   |  |  |  |  |  |  |
| 026_021 G-3 Film Line                         | Permit ID# 1200-0073   |  |  |  |  |  |  |
| 026E_006 G-3 Film Line                        | Permit ID# 1200-0073   |  |  |  |  |  |  |
| 026E_007 G-3 Film Line                        | Permit ID# 1200-0073   |  |  |  |  |  |  |
| 026E_023 G-3 Film Line                        | Permit ID# 1200-0073   |  |  |  |  |  |  |
| 888_001 Airveying                             | Permit ID# 1200-0073   |  |  |  |  |  |  |
| 888E_002 Airveying                            | Permit ID# 1200-0073   |  |  |  |  |  |  |
| 888E_037 Building/Vacuum                      | Permit ID# 1200-0073   |  |  |  |  |  |  |
| 888E_038 G1 edge Trim Baghouse                | Permit ID# 1200-0073   |  |  |  |  |  |  |
| 888E_039 G1 and G2 Drying Tower Baghouse      | Permit ID# 1200-0073   |  |  |  |  |  |  |
| 017J_001 J001 through 006, 013, 014, 018, 019 | Permit ID# 1200-0148   |  |  |  |  |  |  |
| 017J_003 J 012 (Flame Treater)                | Permit ID# 1200-0148   |  |  |  |  |  |  |
| 017J_005 J010 (Tenter Oven)                   | Permit ID# 1200-0148   |  |  |  |  |  |  |
| 017J_006 J010 (Tenter Oven)                   | Permit ID# 1200-0148   |  |  |  |  |  |  |
| 020E_005 J016, 017 & J013                     | Permit ID# 1200-0148   |  |  |  |  |  |  |

|                                          |               |          | P              | OINT S         | OURC          | E PARAN                       | METERS           |                                         |                                        |                     |               |                | Territoria de la composición della composición d |
|------------------------------------------|---------------|----------|----------------|----------------|---------------|-------------------------------|------------------|-----------------------------------------|----------------------------------------|---------------------|---------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STACK ID                                 | DATE LAST LOC |          | LOCATION (UTM) |                | EXIT          | EXIT                          | STACK            | DISCHARGE                               | RAIN                                   | BUILDING PARAMETERS |               | METERS         | DIST TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                          | MODELED       | EAST (M) | NORTH<br>(M)   | HEIGHT<br>(FT) | TEMP.<br>(°F) | VELOCITY<br>(FT/SEC)          | DIAMETER<br>(FT) | ORIENTATION                             | CAP?                                   | HEIGHT<br>(FT)      | WIDTH<br>(FT) | LENGTH<br>(FT) | PROPERTY<br>LINE (FT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                          |               |          | F              | ILM PL         | ANT- P        | ermit <b>ID</b> #             | 1200-0073        | <u> </u>                                | ************************************** | I Samuel Since (I)  |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 001E_002 G1 Tenter                       | 7/16/04       | 375414   | 3845937        | 51.12          | 266           | 23.26                         | 1.42             | Vertical                                | No                                     | 96.3                | 65.6          | 65.6           | 584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 001E_057<br>G1XT G1 Extruder             | 7/16/04       | 375393   | 3846020        | 66.31          | 68            | 0.0328                        | 30.12            | 45 deg. down                            | N/A                                    | 96.3                | 59.1          | 59.1           | 574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 001E_097 PP2 Esterification<br>System #2 | 7/16/04       | 375438   | 3845861        | 101.41         | 195           | 21.23 <sup>1</sup><br>(15.01) | 0.25             | Vertical                                | No                                     | 104                 | 68.9          | 68.9           | 610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 001E_098 Polycon #4                      | 7/16/04       | 375435   | 3845862        | 98.33          | 210           | 45.93                         | 0.17             | Vertical                                | No                                     | 104                 | 68.9          | 68.9           | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 001E_099 Polycon #3                      | 7/16/04       | 375436   | 3845865        | 101.25         | 210           | 21.23 <sup>1</sup><br>(15.01) | 0.25             | Vertical                                | No                                     | 104                 | 68.9          | 68.9           | 607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 001E_101 Polycon #2                      | 7/16/04       | 375435   | 3845871        | 101.33         | 198           | 21.23 <sup>1</sup><br>(15.01) | 0.25             | 45 deg. up                              | No                                     | 104                 | 68.9          | 68.9           | 607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 001E_102 Polycon #1                      | 7/16/04       | 375432   | 3845873        | 98.82          | 195           | 45.93                         | 0.17             | Vertical                                | No                                     | 104                 | 68.9          | 68.9           | 597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 001E_103 PP1 esterification<br>System #1 | 7/16/04       | 375434   | 3845875        | 101.41         | 195           | 21.23 <sup>1</sup><br>(15.01) | 0.25             | 45 deg. up                              | No                                     | 104                 | 68.9          | 68.9           | 607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 001E_112 Numerous sources                | 7/16/04       | 375424   | 3845865        | 104.83         | 99            | 9.4 <sup>2</sup>              | 0.67             | Downward                                | N/A                                    | 104                 | 68.9          | 68.9           | 568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 003E_001 Steam Boiler #1                 | 12/2010       | 375429   | 3846024        | 41.0           | 561           | 25.30                         | 3.00             | Vertical                                | No                                     | 96.3                | 65.6          | 65.6           | 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 003E_002 Steam Boiler #2                 | 12/2010       | 375431   | 3846018        | 50.0           | 561           | 10.20                         | 4.00             | Vertical                                | No                                     | 96.3                | 65.6          | 65.6           | 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 003E_0003 Born Oil Heater                | 12/2010       | 375434   | 3846041        | 80             | 700           | 8.14                          | 3.00             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                        |                     |               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 003E_004 Carotek Oil<br>Heater           | 12/2010       | 375435   | 3846035        | 55.0           | 608           | 12.66                         | 3.00             | Vertical                                | No                                     | 96.3                | 65.6          | 65.6           | 522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 007E_001 G2GC G Coater                   | 7/16/04       | 375383   | 3845977        | 69.21          | 135           | 39.38 <sup>2</sup>            | 2.17             | 45 deg. down                            | N/A                                    | 104                 | 55.8          | 55.8           | 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 007E_002 G2GC G Coater                   | 7/16/04       | 375381   | 3845977        | 69.21          | 135           | 41.58 <sup>2</sup>            | 2.17             | 45 deg. down                            | N/A                                    | 104                 | 55.8          | 55.8           | 505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 007E_003 G2PC P Coater                   | 7/16/04       | 375396   | 3845913        | 64.13          | 138           | 83.33 <sup>2</sup>            | 1.17             | 45 deg. down                            | N/A                                    | 104                 | 68.9          | 68.9           | 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 007E_004 G2PC P Coater                   | 7/16/04       | 375393   | 3845913        | 64.13          | 132           | 45.23 <sup>2</sup>            | 1.17             | 45 deg. down                            | N/A                                    | 104                 | 68.9          | 68.9           | 502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 007E_005 G2 Edge Trim                    | 12/2010       | 375411   | 3846193        | 14.0           | 310           | 43.8 <sup>2</sup>             | 1.30             | 45 deg. down                            | N/A                                    | 96.3                | 59.1          | 59.1           | 551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 007E_006 G1GR                            | 12/2010       | 375408   | 3846192        | 19.10          | Amb.          | 0.0328                        | 0.30             | Downward                                | N/A                                    | 96.3                | 59.1          | 59.1           | 541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 007E_007 G2 Grinder                      | 12/2010       | 375380   | 3846195        | 3.58           | Amb.          | 39.17 <sup>2</sup>            | 2.00             | 45 deg. down                            | N/A                                    | 96.3                | 65.6          | 65.6           | 456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 007E_008 G1/G2 Dryer                     | 12/2010       | 375410   | 3846100        | 14.4           | 311           | 51.45 <sup>2</sup>            | 1.17             | Horizontal                              | No                                     | 104                 | 68.9          | 68.9           | 486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 007E_073 G2 Extruder                     | 7/16/04       | 375394   | 3845893        | 59.97          | 70            | 3.42 <sup>2</sup>             | 1.75             | Horizontal                              | No                                     | 104                 | 68.9          | 68.9           | 489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| 888E_037 PET Reclaim<br>Building            | 12/2010  | 375332 | 3846113 | 45    | Amb. | 47.0  | 5.00 | Vertical | No  | 104 | 82  | 82  | 250 |
|---------------------------------------------|----------|--------|---------|-------|------|-------|------|----------|-----|-----|-----|-----|-----|
| 888E_038 G1 Edge Trim<br>Baghouse           | 12/2010  | 375411 | 3846193 | 11.67 | 80   | 68    | 1.33 |          |     |     |     |     |     |
| 888E_039 G1 and G2 Drying<br>Tower Baghouse | 12/2010  | 375475 | 3846256 | 14.5  | Amb. | 30    | 2.67 |          |     |     |     |     |     |
| 026E-005G-3Coater #1                        | 04/17/07 | 375309 | 3846007 | 56    | 70   | 33.33 | 1.78 | Vertical | No  | 50  | 150 | 600 | 300 |
| 026E-006 G-3 Floor Scrap<br>Grinder 1       | 12/2010  | 375313 | 3846154 | 15    | Amb. | 70.7  | 3.0  | Vertical | No  | 50  | 150 | 600 | 210 |
| 026E-007 G-3Floor Scrap<br>Grinder 2        | 12/2010  | 375312 | 3846144 | 15    | Amb. | 59.7  | 1.33 | Vertical | No  | 50  | 150 | 600 | 200 |
| 026E-008 G-3 Floor Scrap<br>Grinder 3       | 04/17/07 | 375336 | 3846013 | 15    | 70   | 12.5  | 2.26 | Vertical | No  | 50  | 150 | 600 | 390 |
| 026E-009 G-3 Floor Scrap<br>Grinder 4       | 04/17/07 | 375332 | 3846035 | 15    | 70   | 12.5  | 2.26 | Vertical | No  | 50  | 150 | 600 | 390 |
| 026E-010 G-3 Oven #1                        | 04/17/07 | 375324 | 3846022 | 56    | 250  | 33.78 | 1.59 | Vertical | No  | 50  | 150 | 600 | 270 |
| 026E-011 G-3 Oven #1                        | 04/17/07 | 375324 | 3846022 | 56    | 250  | 33.78 | 1.59 | Vertical | No  | 50  | 150 | 600 | 270 |
| 026E-012 G-3 Oven #1                        | 04/17/07 | 375322 | 3846034 | 56    | 400  | 35.1  | 2.13 | Vertical | No  | 50  | 150 | 600 | 270 |
| 026E-013 G-3 Oven #1                        | 04/17/07 | 375321 | 3846040 | 56    | 450  | 33.7  | 1.78 | Vertical | No  | 50  | 150 | 600 | 270 |
| 026E-014 G-3 Oven #1                        | 04/17/07 | 375320 | 3846046 | 56    | 400  | 35.1  | 2.46 | Vertical | No  | 50  | 150 | 600 | 270 |
| 026E-015 G-3 Oven #1                        | 04/17/07 | 375318 | 3846053 | 56    | 250  | 33.8  | 2.75 | Vertical | No  | 50  | 150 | 600 | 270 |
| 026E-016 G-3 Oven #1                        | 04/17/07 | 375317 | 3846059 | 56    | 140  | 33.2  | 3.58 | Vertical | No  | 50  | 150 | 600 | 270 |
| 026E-017 G-3 Edge Trim<br>Grinder 1         | 04/17/07 | 375328 | 3846058 | 15    | 70   | 12.5  | 2.26 | Vertical | No  | 50  | 150 | 600 | 390 |
| 026E-018 G-3 Edge Trim<br>Grinder 2         | 04/17/07 | 375323 | 3846081 | 15    | 70   | 12.5  | 2.26 | Vertical | No  | 50  | 150 | 600 | 390 |
| 026E-019 G-3 Coater #2                      | 04/17/07 | 375297 | 3846071 | 56    | 70   | 33.33 | 1.78 | Vertical | No  | 50  | 150 | 600 | 302 |
| 026E-020 G-3 Oven #2                        | 04/17/07 | 375293 | 3846091 | 56    | 200  | 33.33 | 1.78 | Vertical | No  | 50  | 150 | 600 | 299 |
| 026E-021 G-3 Die/Casting<br>Wheel           | 12/2010  | 375336 | 3846186 | 56    | 120  | 33.5  | 3.77 | Vertical | No  | 50  | 150 | 600 | 361 |
| 026E-022 G-3 Extruder<br>Vacuum Pump        | 04/17/07 | 375336 | 3845965 | 126   | 550  | 16.67 | 1.13 | Vertical | No  | 50  | 150 | 600 | 360 |
| 026E-023 G-3 Die/Casting<br>Wheel           | 12/2010  | 375335 | 3846189 | 56    | 80   | 35.8  | 3.65 | Vertical | No  | 50  | 150 | 600 | 308 |
| 026E-001 G-3 Aspirator Feed<br>Hoppers      | 04/17/07 | N/A    | N/A     | N/A   | 68   | N/A   | N/A  | N/A      | N/A | N/A | N/A | N/A | N/A |

| 020E_053 A004 Resin<br>Hopper              | 12/2010  | 375554 | 3845903 | 56.9  | Amb. | 0.0328 | 1.09 | Vertical | Yes |    |     |     |     |
|--------------------------------------------|----------|--------|---------|-------|------|--------|------|----------|-----|----|-----|-----|-----|
| 020E_055 A008 Melters A & B                | 12/2010  | 375548 | 3845896 | 60.7  | 79   | 52.43  | 1.75 | Vertical | No  |    |     |     |     |
| 020E_058 C007 Drying Oven                  | 12/2010  | 375542 | 3845934 | 48.0  | 176  | 53.45  | 2.42 | Vertical | No  | 38 | 509 | 485 | 600 |
| 020E-075 E006                              | 12/2010  | 375490 | 3845899 | 67    | Amb. | 0.0328 | 0.75 |          |     |    | -   |     |     |
| 020E_076 E007                              | 12/2010  | 375490 | 3845899 | 67    | Amb. | 0.0328 | 0.75 |          |     |    |     |     |     |
| 020E_077 E008                              | 12/2010  | 375492 | 3845889 | 67    | Amb. | 0.0328 | 0.75 |          |     |    |     |     |     |
| 020E_082 A011 Bulk Rubber<br>Silo          | 12/2010  | 375491 | 3845882 | 47    | Amb. | 0.0328 | 0.67 | Vertical | No  | 38 | 509 | 485 | 600 |
| 021E_003 A014 Antioxidant<br>Melters A & B | 12/2010  | 375574 | 3845922 | 48.0  | 87   | 65.29  | 1.6  | Vertical | No  | 38 | 509 | 485 | 600 |
| 888E_012 LAB Tank                          | 11/26/96 | 375403 | 3845648 | 24.96 | 68   | 0.0328 | 0.33 | Vertical | Yes |    |     |     |     |
| 888E_013 Solvent Tank                      | 11/26/96 | 375407 | 3845649 | 24.96 | 68   | 0.0328 | 0.33 | Vertical | Yes |    |     |     |     |
| 888E_014 Backup Solvent<br>Tank            | 11/26/96 | 375410 | 3845645 | 14.38 | 68   | 0.0328 | 0.33 | Vertical | Yes |    |     |     |     |
| 888E_015 A015                              | 12/2010  | 375552 | 3845821 | 41    | Amb. | 0.0328 | 3.75 |          |     |    |     |     |     |
| 888E_019 A016                              | 12/2010  | 375550 | 3845826 | 41    | Amb. | 0.0328 | 3.75 |          |     |    |     |     |     |

| AERMOD / AERMAP SPECIFICATIONS TABLE |                                                                                                 |           |        |             |  |  |  |  |  |  |
|--------------------------------------|-------------------------------------------------------------------------------------------------|-----------|--------|-------------|--|--|--|--|--|--|
| MET DATA                             | GSP 2002-2006 [Surface Air = Greenville/Spartanburg SC; Upper Air = Greensboro, NC; 972 ft MSL] |           |        |             |  |  |  |  |  |  |
| NED TERRAIN FILES                    | Anderson, Greenville, P                                                                         |           |        | •           |  |  |  |  |  |  |
| PROJECTION DATUM                     | NAD27                                                                                           | NAD83 X   | WGS-84 | NWS-84      |  |  |  |  |  |  |
| RURAL or URBAN?                      | Rural X                                                                                         | Urban     |        |             |  |  |  |  |  |  |
| ELEVATIONS EXTRACTED                 | Buildings X                                                                                     | Sources X | Tanks  | Receptors X |  |  |  |  |  |  |

<sup>1)</sup> The vertical component of the exit velocity used in the model is listed in parentheses.
2) Modeled at 0.0328 ft/sec.
\*) G1/G2 Dryer PM/PM10 emissions are being split between BH5 (existing baghouse) and BH13 (new baghouse). No change to modeling. 9/20/06 Summary.